
NAVAL
POSTGRADUATE

SCHOOL
MONTEREY, CALIFORNIA

THESIS
LARGE SCALE CROSS-DRIVE CORRELATION OF

DIGITAL MEDIA

by

Joseph Van Bruaene

March 2016

Thesis Co-Advisors: Michael McCarrin
Mark Gondree

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302, and
to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE
03-31-2016

3. REPORT TYPE AND DATES COVERED
Master’s Thesis 06-01-2015 to 03-31-2016

4. TITLE AND SUBTITLE

LARGE SCALE CROSS-DRIVE CORRELATION OF DIGITAL MEDIA
5. FUNDING NUMBERS

6. AUTHOR(S)

Joseph Van Bruaene

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N/A

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this document are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government. IRB Protocol Number: NPS.2012-0024-CR04-EP5-A.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Traditional digital forensic practices have focused on individual hard disk analysis. As the digital universe continues to grow, and cyber
crimes become more prevalent, the ability to make large scale cross-drive correlations among a large corpus of digital media becomes
increasingly important. We propose a methodology that builds on bulk-analysis techniques to avoid operating system- and file-system
specific parsing. In addition, we apply document similarity methods to forensic artifact correlation. By representing each disk image
as a set of hash values corresponding to the 512-byte sectors on the disk, and calculating pair-wise similarity scores between hard
disk images, we analyze a collection of disk images taken from various storage devices purchased from the secondary market. We
conclude sector-based matching is sufficient to identify images in our dataset that share common DLLs, indicating similarity in their
operating systems. We present a visualization of our results as an undirected graph with similarity scores represented as edge weights,
and observe that disk images with common operating systems tend to align with graph clusters. Though no common set of sectors is
present on all drives—even among the large fully-connected component in our graph—we find that grouping our dataset into subsets
with the same operating system version does reveal sizable collections of common sectors, and achieved the best correlation between
sector matches and high-level similarities in our dataset. Extending this technique to a larger dataset and continuing our investigation
of the cause of sector-level matches could yield an automated method of profiling new disk images during the triage process. Moreover,
this technique could be used to corroborate deductions regarding characteristics of information systems associated with target media.

14. SUBJECT TERMS

Digital Forensics, Similarity Detection, Automated Correlation, Digital Fingerprinting, ApproximateMatching,
Bulk Analysis

15. NUMBER OF
PAGES 87

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2–89)

Prescribed by ANSI Std. 239–18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release; distribution is unlimited

LARGE SCALE CROSS-DRIVE CORRELATION OF DIGITAL MEDIA

Joseph Van Bruaene
Lieutenant, United States Navy
MBA, Indiana University, 2008

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2016

Approved by: Michael McCarrin
Thesis Co-Advisor

Mark Gondree
Thesis Co-Advisor

Peter Denning
Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

Traditional digital forensic practices have focused on individual hard disk analysis. As the
digital universe continues to grow, and cyber crimes become more prevalent, the ability to
make large scale cross-drive correlations among a large corpus of digital media becomes
increasingly important. We propose a methodology that builds on bulk-analysis techniques
to avoid operating system- and file-system specific parsing. In addition, we apply document
similarity methods to forensic artifact correlation. By representing each disk image as a
set of hash values corresponding to the 512-byte sectors on the disk, and calculating pair-
wise similarity scores between hard disk images, we analyze a collection of disk images
taken from various storage devices purchased from the secondary market. We conclude
sector-based matching is sufficient to identify images in our dataset that share common
DLLs, indicating similarity in their operating systems. We present a visualization of our
results as an undirected graph with similarity scores represented as edge weights, and
observe that disk images with common operating systems tend to align with graph clusters.
Though no common set of sectors is present on all drives—even among the large fully-
connected component in our graph—we find that grouping our dataset into subsets with
the same operating system version does reveal sizable collections of common sectors, and
achieved the best correlation between sector matches and high-level similarities in our
dataset. Extending this technique to a larger dataset and continuing our investigation of
the cause of sector-level matches could yield an automated method of profiling new disk
images during the triage process. Moreover, this technique could be used to corroborate
deductions regarding characteristics of information systems associated with target media.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1
1.1 Motivation . 3
1.2 Contributions . 4
1.3 Outline of this Thesis. 5

2 Technical Background 7
2.1 Secondary Storage Basics . 7
2.2 Document Similarity . 9
2.3 Bytewise Approximate Matching 15

3 Previous Work 19
3.1 Foundations of Forensic Matching Techniques 19
3.2 Forensic Applications of Cryptographic Hashing 21
3.3 Context-Sensitive Matching . 22
3.4 Block Hash Matching . 23

4 Methodology 27
4.1 Dataset . 27
4.2 Hardware . 28
4.3 Software. 28
4.4 Overview of Methodology. 29

5 Results 39
5.1 Experiment 1: Summary Statistics of Similarity Scores and Visualization . . 40
5.2 Experiment 2: Common Set of Hashes Across Dataset 45
5.3 Experiment 3: Frequency and Distribution of Common Hashes 48
5.4 Experiment 4: Matching Sector-Level Hashes Across Dataset. 50
5.5 Experiment 5: Common Set of Hashes by Community 52

6 Conclusion 57

vii

6.1 Summary . 57
6.2 Future Work . 58

Appendix: [Disk Image Filenames by Number] 61

List of References 65

Initial Distribution List 69

viii

List of Figures

Figure 2.1 Example graph representing nodes as images and edge weights as
similarity scores . 14

Figure 4.1 SectorScope graphical user interface showing sector matches as a
histogram . 30

Figure 4.2 Example workflow for recursive intersection of four hash databases
created from disk images. 34

Figure 5.1 Non-zero multiset Jaccard similarity score histogram 40

Figure 5.2 Non-zero set Jaccard similarity score histogram 41

Figure 5.3 Side-by-side comparison ofmultiset and set Jaccard similarity graphs
by country of origin . 44

Figure 5.4 Side-by-side comparison ofmultiset and set Jaccard similarity graphs 46

Figure 5.5 Set Jaccard similarity visualization by partition typewith edgeweight
filter . 47

Figure 5.6 Cumulative distribution function of duplicate sector hashes by num-
ber of disk images . 49

Figure 5.7 SectorScope histogram for scanned image against database of known
duplicate hashes . 51

Figure 5.8 Set Jaccard similarity visualization partition type and operating sys-
tem . 54

Figure 5.9 Set Jaccard similarity visualization of partition type and various
Windows operating systems . 55

ix

THIS PAGE INTENTIONALLY LEFT BLANK

x

List of Tables

Table 5.1 Summary statistics calculated for our multiset and set Jaccard simi-
larity metrics. 42

Table 5.2 Disk images categorized by country of purchase. 42

Table 5.3 Disk images categorized by partition type. 43

Table 5.4 Operating system counts of our subset of 57 images. 52

Table 5.5 Count of hashes in the intersection of all drives in our subset of 57
images with common operating systems. 52

Table 5.6 Count of hashes in the multiset intersection of all drives in our subset
of 57 images when grouped by operating systems 53

Table 5.7 Count of distinct hashes in the set intersection of all drives in our
subset of 57 images when grouped by operating systems 53

Table A.1 Disk image name represented by number 64

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

List of Acronyms and Abbreviations

BA Bosnia and Herzegovina

BD Bangladesh

CDF cumulative distribution function

CN China

CSIRT Computer Security Incident Response Team

CSV comma-separated values

CTPH Context Triggered Piecewise Hashing

DLL dynamic-link library

DOD Department of Defense

HPC High Performance Computing Center

HU Hungary

IL Israel

NPS Naval Postgraduate School

PK Pakistan

RDC Real Data Corpus

TH Thailand

xiii

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

Acknowledgments

This thesis would not be possible without the help and guidance of many. I would first like
to thank my thesis advisors, Michael McCarrin and Mark Gondree. Michael, if it were not
for your technical teaching both in the classroom and for my research, I would have never
been able to get started. Your commitment to explaining countless topics related to digital
forensics, often multiple times, enabled me to persevere and complete this project. Mark,
your insights and attention to detail were instrumental in shaping the direction of this work.
When we got down to the wire, you took the time to provide thoughtful feedback, often on
the weekend, to ensure the completion of this thesis. I am eternally grateful to both of you
for your dedication and passion for research.

I would like to thank my wife, Julie, for taking care of everything these last few months as I
disappeared for countless nights and weekends to finish my research. I would like to thank
my parents for always encouraging me to work hard and always do my best in everything I
do. Thank you to my fellow students who suffered along with me during this process and
helped me in so many ways.

xv

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

CHAPTER 1:
Introduction

Applications of digital forensics range from investigation of both cyber and traditional
crimes, through intelligence gathering efforts, to protection of intellectual property. In
these capacities, digital forensic capabilities are increasingly relevant to a wide range of
organizations, including law enforcement, intelligence agencies, the military, and both
public and private institutions. As the need for these capabilities expands to more domains,
practitioners struggle to keep pace with the proliferation of digital media and an increased
number of digital artifacts requiring analysis.

Law enforcement and intelligence agencies have been using digital forensics to collect in-
formation and prosecute criminal activity for decades. Cyber crimes include the theft or
destruction of intellectual property, child solicitation and pornography, misuse of informa-
tion systems, and the distribution of malicious software. In addition to its direct use for the
detection and prosecution of cyber crimes, digital evidence can also be used as supporting
evidence to non-electronic crimes, where it can provide intent, whereabouts, and proof of
relationships.

According to a cybersecurity market report issued by the research firmMarketsandMarkets,
the global cyber security market (security solutions and services) is expected to grow from
$63.7 billion in 2011 to $120.1 billion by 2017 [1]. In an effort to combat this new illicit
activity, law enforcement agencies, financial institutions, and other private businesses are
incorporating digital forensic experts into their organizations [2]. As courts prosecute more
crimes related to computer systems, and establish legal precedents, digital forensics will be
heavily affected by new court rulings. The impact for digital analysts will be that collection
methods and scientific analysis be performed in a way that is legally admissible in the court
of law [3]. Further, rising demand for analysis of digital evidence produces a corresponding
need for improved methods of acquiring and understanding this evidence. As cyber crime
and the amount of data increases, digital practitioners must be able to triage large amounts
of data efficiently and accurately. In recognition of this development, the National Institute
of Justice supports the development of automated tools and the collection of digital evidence
through its Electronic Crime Program [4].

1

In addition to the applications related to law enforcement, digital forensics is also a key
tool used by the military and public and private organizations to understand the security
environment an organization is facing and investigate cyber security incidents. (In this
context, an incident can be any act violating an explicit or implied security policy—e.g.,
unauthorized access, denial of service, destruction of hardware or software.) Here also,
the proliferation of digital evidence in need of examination is contributing to the expanding
demand for scalable, automatic forensic analysis techniques. The military environment
often operates in real-time and cannot afford to take systems offline to investigate each
breach of a system. Therefore, in the event of a computer security incident, digital forensics
becomes a critical component of the collection and evaluation of a Computer Security
Incident Response Team (CSIRT)—the entity responsible for reviewing the event. As the
focal point for the incident, the CSIRT is the central location for all analysis and correlation
of event activity. As the number of events grows within an organization and expertise is
established within the CSIRT, digital forensic analysts need a way to correlate new incidents
with past events to better understand the security environment. Depending on the scale of
the incident, being able to sift through large amounts of data to determine relevant activity
could be the determining factor in effective incident handling, as well as the efficient use
of limited CSIRT manpower. Identifying trends and likely behavior in the triage process
allows for more accurate handling and analysis by focusing on the key incident factors and
filtering out irrelevant data. The interconnected environment of today’s computer systems
necessitates the ability tomake correlations between disparate data sources formore efficient
analysis [5].

Even as digital forensics is being applied to more domains, growth within these domains—
and with respect to the digital universe in general—contributes to the rise of new technical
challenges. According to EMC, a global leader in providing information technology as a
service, the digital universe is doubling every two years. It is estimated that by 2020, the
amount of data created will reach 44 zettabytes (44 trillion gigabytes) [6]. While most of this
data is transient, and not stored, the accelerating production of data coupled with decreasing
hard disk prices [7] vastly increases the amount of potential data a forensic practitioner must
be able to collect and analyze. As more organizations monitor employees’ computers for
unauthorized activity, more law enforcement officers examine victim and suspect computers
for incriminating evidence, more network analysts scrutinize communications to and from

2

client machines—in general, that is, as the amount of forensic data grows—we face an
intensifying need for a methodology to incorporate multiple data sources to investigate
similarities in processed digital media. With data growth rates approaching 40% per year
for the next decade, digital forensics has the opportunity to provide actionable intelligence
to otherwise dormant data with the development and use of tools and techniques able to
correlate large amounts of data.

1.1 Motivation
As practitioners become inundated with greater amounts of data, they need a systematic
way to retain the knowledge learned from past analysis. The ability of a digital forensic
analyst to efficiently and accurately process relevant data becomes increasingly impaired as
data becomes more ubiquitous and consumers move to multiple types of storage devices
(thumb drives, external hard drives, cloud storage, mobile devices, tablets, etc.). Every
time someone creates a new file system or operating system, we have to start over and
maintaining a set of tools that can handle every different format is very difficult, requiring
a mass community effort (an example is the Sleuth Kit). Even when this is coordinated
effectively, we are still vulnerable to an adversary who recognizes that our resources can be
overwhelmed by using unusual systems, or inventing new, custom systems for which tools
do not yet exist.

In light of these challenges, it becomes increasingly important that tools and techniques
be able to detect similarities and draw correlations between large amounts of disparate
storage devices. Traditional digital forensic practices have focused on the analysis of digital
media on a case-by-case basis. Typically, an analyst or team of analysts examine one
hard drive image or small collection associated with a case, then move on to the next.
With this process, even with detailed notes, it is difficult for an organization to recognize
similarities and make correlations between cases, especially over long periods of time. The
conventional approach to digital forensics limits the scope of analysis to individual devices
and severely restricts the intelligence that can be derived from making large scale cross-
drive correlations. An alternative approach consists of a matching and correlation process
capable of being automated and run on large amounts of data.

Wepropose amethodology that builds on bulk-analysis techniques to avoid operating system,

3

and file-system specific parsing. In addition, we draw on general methods developed from
document similarity work (which has been very effective for applications such as web
search) and apply these to forensic artifact correlation. Because little research has been
done in this area, we hope to offer preliminary groundwork for automatically identifying
features and artifacts of forensic interest, which might eventually be used to profile new or
unknown systems.

1.2 Contributions
This thesis combines sector-based matching techniques with similarity algorithms to corre-
late disk imageswith common sectors among a large corpus. We characterize these common
sectors in terms of their frequency, and attempt to provide some insight into the high-level
semantic similarities from which they derive. We conclude sector-based matching is suf-
ficient to identify images sharing common dynamic-link library (DLL) files indicating the
presence of shared operating system artifacts due to related operating system versions. Fur-
ther, we present a visualization of our results as an undirected graph (with similarity scores
as edge weights), which clusters a majority of the images in our dataset based on operating
system and identifies small groups of uniquely matched images. We determine the disk
images represented in the largest fully-connected component of our graph do not contain a
single common set of sectors present on all images; however, further examination shows a
sizable group of common sectors is shared by disk images tagged with the same operating
system version.

Extending this technique to a larger dataset and continuing our investigation of the cause
of sector-level matches could yield an automated method of profiling new disk images
during the triage process, which would be especially useful if devices were acquired under
circumstances that did not permit inspection of their running state. Moreover, this technique
could be used to corroborate deductions regarding characteristics of information systems
associated with target media. Such a capability could provide quick insight into community
infrastructure or the characteristics of organizations from which drives were collected.
Conversely, if common sectors corresponding to operating system structures were identified
and removed, our method might prove useful in identifying other important similarities
across large collections of drives, such as virus infections or common user data.

4

1.3 Outline of this Thesis
The remainder of this thesis is organized as follows. Chapter 2 provides a technical
background. Chapter 3 describes previous work conducted. Chapter 4 describes the
methodology for calculating our pair-wise similarity metrics and the experiments conducted
to determine the underlying causes of the similarities. Chapter 5 describes the results. And
finally, Chapter 6 discusses our conclusions and suggests future work.

5

THIS PAGE INTENTIONALLY LEFT BLANK

6

CHAPTER 2:
Technical Background

To facilitate our explanation of our methodology of calculating pair-wise similarities be-
tween hard drive images and identifying high-level similarities among digital artifacts, we
provide the technical background of three key areas:

1. Secondary storage basics,
2. Document similarity, and
3. Bytewise matching.

The first topic covers an introduction to some fundamental underlying concepts in digital
media and its forensic representation as disk images, of which our dataset is comprised.
Once this is established, we proceed to discuss some relevant techniques for measuring
similarities between text documents, which we will generalize to arbitrary binary data. We
also given an example of a method of visualizing similarity relationships using a graph.
Lastly, we discuss several concepts relied on heavily in approximate matching techniques
developed for digital forensics.

2.1 Secondary Storage Basics
All experiments we perform depend on a dataset comprised of hard drives purchased on
the secondary market from all countries except the United States, and stored as a large
collection of disk image files. To understand the storage devices we are evaluating, some
familiarity with basic disk-level structures and disk images formats is helpful.

2.1.1 Disk Sector
A sector is the smallest unit of data that can be read or written to a disk. Each sector is a fixed
amount of data that is read sequentially and is passed between the disk and its controller [8].
When the physical limits of magnetic disk technology were reached in 2009, manufacturers
began migrating away from the traditional 512-byte sectors to 4096-byte sectors. As areal
densities increased over time, the traditional smaller 512-byte sector began to consume less
space on the hard drive surface, which impacted error correction and increased the risk of

7

media defects. The transition to 4096 bytes allowed hard drives to store the physical data
more efficiently on the disk and provide more robust error detection [9]. This new disk
format is known as the advanced format and was chosen to match the x86 page size and the
default NTFS cluster size. The advanced format provides about 10% greater capacity but
potentially wastes space for small files unless the filesystem can efficiently store them [10].

Sector size is important in digital forensics as analysts often choose equal-sized blocks
for hashing based on the sector size of a given hard drive. However, for a large-scale
similarity analysis ofmany drives, it is important that the sector size remain constant between
processed media to preserve alignment. To compare fingerprints (see Section 2.3.1) for
similarity across disparate sources, the input size must remain the same to ensure matching
fingerprints correspond to identical objects. For our analysis, we have chosen to divide
all drives into 512-byte sectors. In doing so, we will be able to process hard drive images
regardless of the original disk’s sector size by ensuring our granularity is small enough to
include both sector sizes (a 4096-byte sector is eight 512-byte sectors).

2.1.2 Disk Image
A disk image is a sector-by-sector (see Section 2.1.1) software representation of a hard
disk including the partition table, file allocation tables, and data partitions. A disk image
is produced from the secondary storage device without reference to operating system level
structures and enables a digital forensic practitioner to perform analysis on a copy of the
original drive so that changes are not inadvertently applied during analysis thus preserving
the integrity of the disk. With the original disk intact, it is then possible to create multiple
disk images and reproduce forensic test results. A sector-by-sector copy may also preserve
data not available to the operating system due to deliberate actions to hide data (e.g., hidden
partitions) [11].

There are multiple types of disk images. Two examples include the raw and E01 format.
The raw format is a generic standard produced by a sector-by-sector copy and is often
identified by an img or raw extension. The E01 format is a proprietary and partially open
specification format created by EnCase software to store digital evidence (identified by an
E01 extension). The E01 format can store a single image in one or more segment files (e.g.,
E01, E02, E03) and is an industry standard for storing digital forensic images. Each file

8

consists of a standard 13-byte header, followed by a series of sections, where each section
has a header that contains information such as case number, evidence number, unique
description, examiner name, and notes [12]. The disk images used in our analysis were
produced using the E01 format.

2.2 Document Similarity
Document similarity is an important class of problems with applications ranging from
search to copyright enforcement to deduplication. Our discussion includes an introduction
to types and tokens, covers the notions of resemblance and containment, and finishes with
Jaccard similarity.

2.2.1 Types And Tokens
The distinction between a type and a token is the separation between a generic class of
object (e.g., “bicycles”) and a particular concrete instance (e.g., “my bicycle”). Broder uses
a snippet of the Gertrude Stein poem Sacred Emily to illustrate the difference [13]:

A rose is a rose is a rose is a rose.

If asked to count the words in this sentence, one might answer that there are three words (a,
rose, is) or ten words (a, rose, is, a, rose, is, a, rose, is, a, rose). Words in the first sense are
considered types, abstract and unique, and words in the second sense tokens, concrete and
particular [14]. For our analysis, we will differentiate our similarity metrics based on how
we count each hash—as either a type or a token.

2.2.2 Resemblance and Containment
To compare two digital objects, we need to understand what those objects are. In document
similarity, a document can be thought of as a collection of words, and each word as a part
of a set that makes up the document. The set is often referred to as a bag, or multiset, in
that words often repeat in documents. However, we can also represent each word only once
and represent the document as a set. In both cases, we do not deal with the meaning of the
text, but instead look for the presence of common words. Broder [13] discusses two ways
to interpret similarity in this case:

9

1. Resemblance, showing two objects are roughly the same, and
2. Containment, showing one object is roughly contained in an other;

each of which can be reduced to a set intersection problem.

The resemblance of two sets, A and B, is defined as:

r (A, B) =
|A ∩ B |
|A ∪ B |

. (2.1)

This score is also referred to as the Jaccard similarity—see Section 2.2.3 [15]. The con-
tainment of two sets, A and B, is defined as:

c(A, B) =
|A ∩ B |
|A|

. (2.2)

For our analysis, the similarity score is calculated using the resemblance equation, where
each disk image is treated as a set of hash values representing sectors, and the cardinality
of the intersection of two sets is weighed against the cardinality of the union of both sets.
Generally, we can calculate the similarity score, s, between two sets of hashed sectors, A

and B, as:

s(A, B) =
|A ∩ B |
|A ∪ B |

. (2.3)

Depending on the cardinality of our two sets A and B, the resemblance and containment
equations yield very similar results when the cardinality of A and B are roughly the same,
and both approach 1 when A approaches B. The primary difference arises when handling
objects where the cardinality of each set is of dramatically different sizes (probably because
the objects themselves are different sizes). For our analysis, we are choosing a resemblance
measure which will penalize comparisons between very small and very large drives due to
the low cardinality of the intersection. However, the Jaccard similarity does provide some
useful features for future work. For one, it is the complement of the Jaccard distance, which
measures dissimilar sets, and may be efficiently estimated with the MinHash scheme [13].

10

2.2.3 Jaccard Similarity
Jaccard similarity is a statistic used for comparing sets by looking at the relative size of their
intersection. Based on howwe treat our hashes, as either types or tokens (see Section 2.2.1),
we arrive at two different similarity metrics: a multiset Jaccard similarity and a set Jaccard
similarity. The similarity score, s, can be represented as a function of two sets, A and B,
where we divide the cardinality of the intersection of A and B with the cardinality of the
union of A and B:

s(A, B) =
|A ∩ B |
|A ∪ B |

. (2.4)

Because of a minor quirk in the tool we used to store and manipulate sets of hashes (see
Section 4.3.2), our multiset Jaccard similarity differs slightly from the standard definition.
Typically, in multisets, each element is assigned a multiplicity corresponding to the number
of times that element occurs in the multiset. In traditional multiset intersection operations,
each element in the intersection of the two sets has a multiplicity equal to the minimum
multiplicity of that element in either of the sets involved in the intersection operation. Thus,
for

A = {a, b, c, c} and B = {a, b, c, c, d, e},
we have

A ∩ B = {a, b, c, c}.
However, because our databases seek to preserve information regarding the origin of the
hash values (i.e., which disk image they were imported from), our multiset intersection
operation adds the multiplicities of the elements found in either set, essentially functioning
as a multiset union operator for only elements that have some representation in both sets.

Therefore, in our multiset Jaccard similarity calculation, when we calculate the intersection
of A and B we get 2 a’s, 2 b’s, and 4 c’s.

A ∩ B = {a, a, b, b, c, c, c, c}.
11

Because the choice of similarity metric is somewhat arbitrary, we do not believe this
deviation has a significant impact on the outcome of the similarity calculations. Our
multiset union operation follows the traditional definition; when we calculate the union of
A and B we get 2 a’s, 2 b’s, 4 c’s, 1 d, and 1 e.

A ∪ B = {a, a, b, b, c, c, c, c, d, e}.

For our multiset Jaccard similarity calculation, the cardinality of the set intersection, nu-
merator of our calculation, represents a matching hash each time it appears. In our example
above, the cardinality of the intersection is 8 (2 a’s + 2 b’s + 4 c’s). The denominator, the
cardinality of the set union, will represent the total number of hashes in each set. For our
example, the cardinality of the union is 10 (2 a’s + 2 b’s + 4 c’s + 1 d + 1 e). Therefore, we
calculate a multiset Jaccard similarity score of:

s(A, B) =
|A ∩ B |
|A ∪ B |

=
8
10
= 0.8. (2.5)

The set Jaccard similarity metric is a slight variation of the previously defined multiset
Jaccard similarity. Both metrics apply a set intersection calculation; however, the set
Jaccard similarity will only count a matching hash once—that is, each hash is treated as a
type.

For example, we can see how the set similarity differs from the multiset using the same
example of multisets as before:

A = {a, b, c, c} and B = {a, b, c, c, d, e}.

However, representing A and B as sets, not multisets, we obtain:

A = {a, b, c} and B = {a, b, c, d, e}.

When we calculate the intersection of A and B we get 1 a, 1 b, and 1 c.

12

A ∩ B = {a, b, c}.

When we calculate the union of A and B we get 1 a, 1 b, 1 c, 1 d, and 1 e.

A ∪ B = {a, b, c, d, e}.

For the set Jaccard similarity calculation, the cardinality of the set intersection, the numerator
of our calculation, counts a matching hash one time no matter how many times it is
represented in the database. In our example above, the total intersection is 3 (1 a + 1 b + 1
c). The denominator, the set union, will represent the total number of hashes (at most once)
in each set. For our example, the total union is 5 (1 a + 1 b + 1 c + 1 d + 1 e). Therefore,
we calculate a set Jaccard similarity score of:

s(A, B) =
|A ∩ B |
|A ∪ B |

=
3
5
= 0.6. (2.6)

To implement our multiset and set Jaccard similarity in software, we must manipulate
the hash databases in such a way to emulate the behavior we expect. The hashdb tool
(see Section 4.3) stores each hash along with a string representing the source of the hash
(typically a file path and the offset into the source where the hash was acquired). We
emulate the behavior of a multiset by making sure each hash has a unique source/offset
associated with it, but then only look at the hash value part of the hash-origin pair when
we are counting elements. We emulate the behavior of a set by doing the same thing but
also making sure no hash value can occur more than once by creating our databases with
the maximum number of hashes allowed equal to one.

It is important to note that the Jaccard similarity metrics are normalized based on the
cardinality of the sets representing each image, which correlates to total disk image size.
For two drives that are roughly the same size, this does not affect our results. However, if
two drives are vastly different sizes, even a small similarity score may be meaningful. For
example, if a thumb drive or mobile device contains files of interest matching a much larger
hard drive, the overall size of the two drives will dwarf the importance of the relatively
smaller matching sectors. This effect is mitigated somewhat by the set similarity (in contrast

13

to the multiset) since repeated sectors do not alter the score. However, focusing on types
rather than tokens has a much greater impact on document similarity than sector similarity,
since the diversity of sectors far exceeds the diversity of words.

2.2.4 Visualizing Similarity
To visualize our similarity calculations, we use an undirected graph to model our pair-wise
similarity calculations. Treating each hard disk image as a node, or vertex, and similarity
scores as edge weights we are able to visualize the connectedness of our images. Therefore,
lines connecting any two images indicates a similarity score greater than zero where a
thicker line represents a higher score. We use the Fruchterman Reingold [16] algorithm to
optimize the distribution of nodes evenly and reflect symmetry. This allows us to easily
identify clustering of similar images. Each graph is also color-coded based on themodularity
class algorithm of Blondel et al. [17] which attempts to extract the community structure of
large networks by grouping similar nodes. Figure 2.1 provides an example graph showing
five nodes and edges as determined by similarity scores. A thicker line represents a higher
similarity score.

1

23

4 5

Figure 2.1: An example graph with five images represented as numbered
nodes and connections indicating non-zero similarity score. A thicker lines
represents a higher similarity score.

14

2.3 Bytewise Approximate Matching
Approximate matching is a general term for determining similarities between digital arti-
facts. In this section, we discuss fingerprints, cryptographic hashes, and bytewise approxi-
mate matching as a way to determine similarity between digital objects.

2.3.1 Fingerprints
A fingerprint, or signature, is an identifier for a larger object. It is a way of representing
a larger digital object with a smaller identifier. A fingerprinting algorithm is a procedure
that maps an arbitrarily large input to a smaller, fixed-length output. A fingerprint has the
property that if two fingerprints are different, the corresponding objects are most likely
different, and there is only a small probability that two different objects have the same
fingerprint [18]. Creating fingerprints is a way to reduce the amount of storage necessary
to identify a large amount of data. For example, storing the fingerprints of sectors, we can
uniquely identify each block of a hard disk, and only have to work with the corresponding
fingerprint, or hash database, as opposed to the larger original disk image.

2.3.2 Cryptographic Hashes
Cryptographic hash functions are an example of a fingerprint algorithm (see Section 2.3.1)
and have been widely used to identify exact matches in digital forensic analysis. The
Message Digest (MD5) algorithm, the hash function used in our analysis, takes as input a
message of arbitrary length and produces as output a 128-bit “message digest” of the input.
The MD5 message-digest algorithm is simple to implement, and provides a fixed-length
output of an arbitrary-length object, which can then be compared with other fingerprints to
identify exact matches quickly [19].

Cryptographic hash functions have three distinct properties applicable to digital forensics:

1. Pre-image resistance (one-way function): for any given message digest, it should be
computationally infeasible to find a corresponding input which hashes to that digest.

2. Second pre-image resistance: it is computationally infeasible to find any second input
which has the same digest as any specified input.

3. Collision resistance: it is computationally infeasible to find any two inputs which
hash to the same output [20].

15

For digital forensics, pre-image resistance and collision resistance enable the ability to
take an arbitrary length message as input and rely on its hash as a sufficiently unique
representation of a digital artifact. Cryptographic hashes also exhibit what is called the
“Avalanche Effect.” A hash function displays the Avalanche Effect if a small change in the
input to the hash function causes a large change to its message digest. This property is
extremely beneficial when trying to obfuscate data (e.g., passwords in a shadow file), as two
similar inputs have two very different hashes, but greatly reduces the ability to determine
similarity between two digital objects solely by examining their hashes. When a file is
changed only slightly, its digest changes drastically; this reduces our ability to find similar
digital objects that vary even slightly. Consequently, an adversary can make minor changes
to files and completely eliminate the possibility of detecting matches using techniques that
rely on file-hashing. In addition, many file types contain header information that changes
each time a user saves a file. This makes detecting similarity between files incredibly
difficult as simply saving a file can result in a change to its hash (without changing its
content). We attempt to overcome this limitation by hashing along sectors, which has the
potential of detecting matching blocks of a file even if other blocks have changed (given the
file’s size is of sufficient length to stretch over multiple sectors).

Due to the unique properties of cryptographic hash functions, notably collision resistance,
cryptographic hashes are commonly used to uniquely identify segments of digital media.
Hashes can be used to identify entire hard disks, individual files, or equal-sized segments
of a hard disk or file. While MD5 is known to have weaknesses as a cryptographic hash, its
vulnerability stems from an attacker’s ability to create collisions. Although collisions could
potentially inflate similarity scores computed in our work, the motivation for this deception
strategy is unclear, and we expect the effect to be minimal. We therefore use MD5 despite
this issue because of its speed advantages [21].

2.3.3 Bytewise Approximate Matching
Determining if two drives are similar at a binary level falls into the approximate matching
category called bytewise matching. Bytewise matching is in reference to the fact that the
similarity decision relies solely on the sequence of bits that make up the digital object.

Bytewise matching works in two parts:

16

1. A compressed representation of the digital object is created (in this case a collection
of MD5 hashes of equal-sized sectors), and

2. A similarity score is calculated from these representations.

Using equal-sized sectors enables digital forensic practitioners to segment a dataset and
uniquely identify each block utilizing a cryptographic hash. This allows for comparisons to
be made across large diverse sets of data by comparing hashed sectors [22].

2.3.4 Block Types
There are three ways to describe types of blocks: unique, distinct, and probative. The
definitions of their use follow.

A unique block is a data block that appears only once. A truly unique block provides little
benefit to a forensic analyst looking for matches—as there are none.

A distinct block is defined as “a block of data that will not arise by chance more than
once” [23]. This implies that a distinct block is created by a random process (e.g., JPEG
format pictures taken of nature). It is important to note while it is possible to determine
if a block is not distinct, it is impossible to determine the contrary, that a block is distinct,
with certainty. However, Garfinkel posits two hypotheses of distinct blocks important for
forensic analysis:

1. Distinct Block Hypothesis #1: If a block of data from a file is distinct, then a copy of
that block found on a data storage device is evidence that the file was once present.

2. Distinct Block Hypothesis #2: If a file is known to have been manufactured using
some high-entropy process, and if the blocks of that file are shown to be distinct
throughout a large and representative corpus, then those blocks can be treated as if
they are distinct [23].

Finally, a probative block is an extension of a distinct block used to “describe data that
conveys a high probability that an entire file (or a file based on the entire target file) was
once present” [24]. Garfinkel et al. changed terminology from distinct to probative after
determining that seemingly distinct blocks are often blocks that repeat infrequently without
necessarily providing evidence of the presence of the rest of the file; a fact discovered when
blocks were compared to a larger corpus. We observe this phenomenon in our analysis as

17

we look at very large datasets containing many images.

18

CHAPTER 3:
Previous Work

Our research begins with the culmination of work conducted in very different areas. To
cover each topic, four broad themes will be used to illustrate the previous work preceding
our ability to conduct large-scale similarity detection:

1. Foundations of digital forensic matching techniques
2. Forensic applications of cryptographic hashing
3. Context-sensitive matching, and
4. Block hash matching

This chapter begins with the basic concepts of similarity as a mathematical set and how
we can apply efficient string fingerprinting to digital objects. From there, we examine the
evolution of cryptographic hashing techniques to identify various segments of digital data.
Finally, we conclude with specific forensic techniques for matching digital objects.

3.1 Foundations of Forensic Matching Techniques
Determining the similarity between two digital objects requires a repeatable method for
determining and quantifying similarity. In this section, we begin with the foundations of
mathematical sets, uniquely identifying digital data, efficient string fingerprinting, and the
application of set theory to digital documents.

3.1.1 Jaccard Similarity
Paul Jaccard [25] first considered similarity, and dissimilarity, during his research of the
geographic locations of common and rare Alpine flora. In an effort to understand the histor-
ical causes of the location of such flora, Jaccard divided the landscape into districts based
on similar and dissimilar characteristics of the topographical and petrological landscape.
He then began examining the ratio of species common to two districts to the total number of
species collected. This ratio, referred to at the time as the coefficient of community, is the
basis for what is now called the Jaccard similarity. Jaccard’s primary contribution was to

19

express similarity as a relationship of two (unordered) sets. Specifically, the Jaccard coeffi-
cient measures similarity between finite sample sets, and is defined as the cardinality of the
intersection divided by the cardinality of the union of the sample sets (see Section 2.2.3).

3.1.2 One-Way Hash Functions
Merkle [26] developed the idea of a one-way hash function as a means to authenticate a
large data field with a smaller data field. In his research to create a public key cryptography
system, he devised a one-way hash function that could take any size input, produce a fixed-
size output, and be computationally infeasible to recreate the input given the output. Hashes
provide an efficient way to take an arbitrary amount of input and provide a fixed output
reducing the space necessary to uniquely identify and store digital media. This construction
was used in the design of many popular hash algorithms includingMD5, SHA1, and SHA2.

3.1.3 Rabin Fingerprinting
In 1981, Rabin [27] developed a simple real-time string matching algorithm and a procedure
for ensuring the integrity of files. The method uses irreducible polynomials to fingerprint
bit streams and is highly efficient and reliable for every input. The Rabin fingerprint has
been the foundation for new techniques since its development, and can be viewed as a
way to efficiently detect similar, but not identical objects. Using a sliding window, the
algorithm decides where to begin and end based on the data in the current window (forming
what is called the Rabin fingerprint). Using a sliding window and removing the rigidity
of predefining equal-sized sectors and offsets eliminates the limitation of such similarity
algorithm’s ability to identify similarity when data is added to the beginning of a file thus
shifting sector alignment. However, this method has been shown to produce high numbers
of false-positives [28].

3.1.4 Document Similarity
Broder’s [13] application of set-based similarity to documents revolutionized text document
search. The concept of resemblance (see Section 2.2.2) in similarity detection applies very
well to finding textually similar documents. Broder et al. [29] applied this concept to the
World Wide Web (pulled from an AltaVista spider run at the time), building a clustering
of all the documents that were syntactically similar. The general technique depends on the

20

ability to extract a set of features from objects. Viewing each document as a sequence of
words, Broder associated with every document a subsequence of words, called shingles,
of size 10. He then used a variation of Rabin’s technique to fingerprint each shingle. He
then compared the fingerprints for each pair of documents to see if they exceed a threshold
of resemblance, and combined the pairs of similar documents to make clusters of similar
documents. This technique is not limited to text documents. Given any technique that
extracts a set of features from an object, we can measure the similarity of any two objects
or cluster the sets of similar objects from a large number of objects.

3.2 Forensic Applications of Cryptographic Hashing
Cryptographic hashes (see Section 2.3.2) are a common way digital forensic practitioners
uniquely identify digital objects. Due to the nature of hashing algorithms, if two digital
objects are hashed and compute to the same digest, the probability that the original two
objects are the same is extremely high. This section examines the evolution of the use of
hash functions for forensic analysis.

3.2.1 File Hashing
Merkle’s development of a one-way hash function (see Section 3.1.2) devised a means
to fingerprint large amounts of digital data for integrity purposes. The application of a
one-way hash as a means to authenticate large amounts of data with a smaller identifier
created the possibility for forensic analysts to begin to fingerprint data and develop matching
techniques. The use of hashes are relied upon heavily in legal cases. In December 2006, the
Federal Rules of Civil Procedure were amended to establish new standards concerning the
preservation and discovery of electronically stored information (ESI)—particularly from
the use of hash functions [30]. Forensic examiners have used hash values throughout the
forensics process. First, hashes were used to fingerprint original data. Before, during,
and after an examination, the data would be hashed and each hash would have to match to
confirm the integrity of the original data. Second, hashes were used to filter out files that
were of no interest, such as operating system files, and to identify files of particular interest.
For this purpose, NIST maintains a database of hashes for common operating systems and
applications [31]. However, file hashing is highly vulnerable to the Avalanche Effect. A
slight modification to a file, intentional or not, will result in a completely different hash.

21

File hashing is also dependent on the filesystem to locate the beginning and end of files.
If digital media is corrupted or altered to hide user data from the operating system, file
hashing may not detect these files.

3.2.2 Piecewise Hashing
Piecewise hashing, originally developed by Nick Harbour while at the Department of
Defense (DOD) Cyber Crime Center for dcfldd [32], segments an entire file into discrete-
sized pieces and computes a hash for each piece rather than a single hash for the entire file.
The technique was originally developed to mitigate errors during forensic imaging. If an
error occurred, only one of the piecewise hashes would be invalidated, and the integrity of
the remainder of the hashes would be assured [33]. However, similar to file hashing, an
adequate representation of the file system is necessary to break each file into blocks and
may not be possible given the state of the imaged digital media. Piecewise hashing is the
basis for many of the tools and techniques used by digital practitioners.

3.3 Context-Sensitive Matching
Kornblum developed [34] Context Triggered Piecewise Hashing (CTPH) as a combination
of Harbour’s piecewise hashing technique and the rolling hash of a Rabin fingerprint. CTPH
can match inputs that have homologies—inputs containing sequences of identical bytes in
the same order, but with bytes in between these sequences that may be different in both
content and length. The proof of concept for CTPH was implemented in ssdeep [35], which
was able to detect similarities in a document given insertions, deletions, and modifications
to the aesthetics of the file (e.g., font size, font color, spacing). However, as each input may
need to be processed multiple times to determine the similarity, the performance of ssdeep
suffers compared to traditional hashing techniques.

Roussev [28] also developed a technique for similarity based off a statistical approach for
selecting fingerprinting features as opposed to Rabin fingerprinting. The technique uses
statistically-improbable features to generate similarity digests by selecting features that are
least likely to occur in other data objects by chance. The proof of concept was implemented
in sdhash [36]. By focusing on statistically-improbable features, as opposed to randomized
feature selection, sdhash reduces the false-positives rate of Rabin fingerprinting. However,

22

without a way to sort the bloom filters of which the signature is comprised, the performance
suffers and is not scalable.

3.4 Block Hash Matching
Block hashing is the application of cryptographic hashes to smaller-than-file size segments
of data. Its application has evolved from blocks of files to blocks as sectors. A description
of these techniques follows.

3.4.1 Bulk Analysis
Typical digital forensic analysis relies on how a human interacts with a computer (e.g.,
creation of images, videos, documents) due to its ease of understanding and transition
to the courtroom as evidence. A complementary approach called bulk data analysis was
examined by Garfinkel [37] and disregards the filesystem and focuses on content. This
allows for analysis to be agnostic to specific computer systems, file systems, and file types.
Garfinkel used the open source forensic tool bulk_extractor (see Section 4.3) to show its
particular effectiveness in triage, especially in cases that involve multiple pieces of digital
evidence. The tool bulk_extractor processes digital data from beginning to end and is not
concerned with the structure of the filesystem.

3.4.2 Hash-Based Carving
Hash-based carving is a technique based on matching hashes of physical sectors of known
hashes to target files (e.g., known illicit files) [38]. As a proof of concept, Garfinkel [39]
used fragments of text from the DFRWS 2006 Carving Challenge to create Google query
terms to find the actual source documents used on the Internet. He then broke these
documents into 512-byte fragments, hashed each block, and searched the Challenge for
512-byte sectors with matching hash codes. Using this technique, Garfinkel identified three
of the documents in the challenge image, including a Microsoft Word file that was divided
into three fragments.

Garfinkel et al. [23] conducted additional research segmenting digital objects into blocks
instead of looking at the whole object. Breaking target files into 4096-byte blocks in order
to match the sector size used on most current hard drives. Each fragment is called a block

23

with its corresponding hash known as a block hash. In the same process as searching for
complete target files, 4096-byte sectors are read, hashed, and compared to block hashes of
target files for matches. However, the implementation did not scale to large systems and
underestimated the difficulty of determining the importance of a block hash match. To
overcome the efficiency issues, hashdb (see Section 4.3) was created as a custom database
to handle hash-based carving.

Young et al. [40] further examined the block hash matching approach by searching disk
sectors for distinct file blocks, rather than searching the file system for distinct files. This
method is no longer concerned with the file system or file type and includes all portions
of the digital media. Breaking the sectors into equal-sized partitions, often 512-byte or
4096-byte sizes, allows detection of target files even if other sections have been changed.
Choosing a suitable block size is a balance between a small enough granularity to correctly
detect matches and the time and space necessary to maintain and process each hashed sector.
However, alignment issues arise when data is inserted at the beginning of a file resulting
in different sector hashes as the data shifts across sectors. As file header data grows or
changes, resulting sector offsets change and so do their corresponding hashes.

Garfinkel andMcCarrin [24] furthered the technique called hash-based carving which com-
pares the hashes of specific data blocks instead of entire files. Evaluating data blocks allows
for more flexibility in detection of incomplete, fragmented, or modified files depending on
the size of the block chosen. Hash-based carving identifies hash matches as a result of a
variety of scenarios, including:

1. A copy of an intact target file is present on the searched media. Because hash-based
carving is file system agnostic, it makes no difference if the file is allocated, deleted,
or in free space.

2. A copy of the target file might have been placed on the searched media at some time
in the past and later deleted and partially overwritten. In this case, there may be small
fragments of a target file on searched media that are probative.

3. A file that has many sectors in common with the target file may be on the searched
media. In this case, hash-based carving will identify the blocks shared between the
two similar files.

4. A target file may be embedded in a larger carrying file, provided that the file is

24

embedded on an even sector boundary. For example, Microsoft’s “.doc” format
embeds objects such as JPEG files on 512-byte boundaries, but the “.docx” format
does not. [24]

Combining hash-based carving and the hash database storage tool hashdb greatly improves
performance by sorting the hashes for faster lookup times. However, segmenting files into
data blocks also increases the number of hashes to be computed and stored potentially
limiting its effectiveness with very large amounts of data.

25

THIS PAGE INTENTIONALLY LEFT BLANK

26

CHAPTER 4:
Methodology

To examine similarity amongst a large set of disparate data sources, we selected a test set
of 100 drive images, hashed each 512-byte sector of each image, and stored the resulting
hashes in 100 databases. We then performed five experiments designed to collect informa-
tion regarding the sector-level similarities between the drives in this set, with the goal of
understanding which high-level characteristics of the drives corresponded most closely to
our similarity measures.

4.1 Dataset
Our experiment worked with a randomly chosen sample of 100 drives taken from the Real
Data Corpus (RDC) [41]. The RDC is a collection of disk images taken from various
storage devices purchased from the secondary market. At the time of this writing, the full
RDC consists of over 60 terabytes of images of extracted from hard drives, cell phones, and
flash drives extracted from all countries except the United States.

To create our sample set, we randomly chose 100 disk images from the RDC (see Ap-
pendix A.1 for a list of disk image filenames). The purpose of this reduced dataset is to
make our analysis computationally feasible while providing a large-enough sample to be
representative of the corpus. The primary difficulty for our approach is the requirement for
a pair-wise similarity calculation. Following the classic solution to the handshake problem,
the numbers of calculations necessary for n images is given by:

n(n − 1)
2

. (4.1)

To compute similarities for all 3,000 images in the full RDC would require 4,498,500
comparisons. Given time limitations to processing time on Hamming (see Section 4.2) and
deadline constraints on the current work, we chose a subset of 100 images. This reduced
the pair-wise similarity requirement to only 4,950 comparisons.

27

4.2 Hardware
We ran the majority of our analysis using the Hamming compute cluster in the High
Performance Computing Center (HPC) at Naval Postgraduate School (NPS). At the time of
processing, Hamming contained 3,858 computing cores, 17.75 terabytes of memory, and
22.7 terabytes of hard disk space. HPC on Hamming allowed the parallel execution of
many analysis tasks. Much of our methodology is embarrassingly, or pleasingly, parallel
and requires very little effort to separate into parallel tasks. As a result, total wall-clock
time was reduced by performing the bulk of our computations in parallel on Hamming.

4.3 Software
Our methodology depended on four open source tools: we relied on bulk_extractor and
hashdb for image processing and hash database manipulation, Gephi for graph visualization,
and SectorScope for analysis of files and sector content represented by matching hashes.

4.3.1 Bulk Extractor
Before selecting our sample set, we used the open source forensic tool bulk_extractor to
create hash databases of 512-byte blocks for each image in the RDC. Bulk_extractor’s
general strategy is to scan a disk image and extract specific features without parsing the
file system or file system structures. Ignoring file systems allows bulk_extractor to be used
to process any source of digital media and also improves processing speed by proceeding
linearly through the scanned media, thus avoiding disk seeks. The tool scans each 512-
byte block, hashes each block, and uses the hashdb scanner to import the hash into a hash
database [42]. Each image’s hash database could then be scanned and queried using the
tool hashdb.

4.3.2 Hashdb
We used hashdb for storage of hashes created from our images. The tool is designed to store
upward of one billionMD5 hashes and can be populated and queried with the corresponding
bulk_extractor scanner, which can be run against both files or whole disk images. Built-in
options enable the scanner to import the hash of every (non-overlapping) 512-byte sector

28

on a disk image. It also allows databases to be queried and merged, and supports operations
for set intersection and union, which were useful for calculating our similarity metrics [43].

4.3.3 Gephi
Gephi is an open-source tool used to explore and visualize graphs. Users can input graph
data in various graph formats or as a comma-separated values (CSV) file. Layout algorithms
can then be applied to give shape to the graph enabling full control of the layout. Applying
filters to the graph (e.g., edgeweight thresholds, minimumconnection requirements) enables
exploration of the graph’s properties. Gephi also provides a statistics andmetrics framework
for social network analysis [44]. In our visualizations, nodes represent disk images and edge
weights correspond to similarity scores where a link between nodes indicates a similarity
score greater than zero.

4.3.4 SectorScope
SectorScope is a visualization tool used for showing how matched blocks are distributed
across a media image. Matches are obtained by scanning the image for previously identified
blocks against a pre-populated database containing the hashes of these blocks using the
bulk_extractor hashdb scanner [45]. SectorScope displays the frequency of matches as a
histogram at given offsets of the disk. Users can highlight portions of the media to view
sectors of interest on the chart. A source table provides the source ID, the percent of this
source that was matched by the scan, the number of matches matched by the scan, the
size the source file matched, and its repository (see Figure 4.1). SectorScope allowed us
to import a hash database of hashes that we know to appear on multiple disk images in
our collection, locate these sectors on a single disk image, and inspect the content of these
sectors and their neighbors (as a hexdump).

4.4 Overview of Methodology
We designed five experiments to identify sector-level similarities between our drives and
understand the relationship between these similarities and high-level features of our dataset,
such as common files, operating system version, file system or region of acquisition. A
high-level description of these experiments is as follows:

29

Figure 4.1: SectorScope shows the number of sectors matching as a his-
togram as you move through the sectors of the hard disk image along the
x-axis. This sample output was taken after scanning image 7 in our dataset
against our hash database of known duplicate hashes. The higher frequency
sectors represent hashes that duplicate the most. Highlighting an area along
the graph allows the user to zoom in and view the sectors with more detail
as well as view the hex/ascii representation of the highlighted section.

1. Compute pair-wise similarity scores and visualize the results
2. Test for a common set of hashes across the dataset
3. Find frequency and distribution of common hashes
4. Compare individual drive images to common hash set
5. Test for common set of hashes by communities

We describe each experiment in detail in the remainder of this chapter.

4.4.1 Experiment 1: Similarity Scores and Visualization
Our first experiment consisted of calculating similarity scores between each image in our
dataset. This process required creating hash databases of each image, performing set in-

30

tersection and union operations between hash databases, and calculating each pair-wise
similarity score using two metrics (see Section 5.1 for a description of similarity metrics).
Once all comparisons were completed, we constructed a graph to visualize their interre-
lationships by representing disk images as nodes and similarity scores as weighted edges
between them.

Hashing Individual Disk Images

We scanned each image in the full RDC with bulk_extractor using the hashdb scanner to
hash each 512-byte block, and import the results into a hashdb hash database. Creating a
separate hash database for each disk image in the corpus allowed us to treat each image as
either a set or multiset of hashes (depending on the requirements of the task) and to perform
the intersection and union operations necessary for each similarity score. We chose sectors
of 512 bytes because this is the smallest addressable unit of most block devices, and file
systems tend to align files on sector boundaries for performance reasons [24]. Consequently,
we expect that our sector hashes will match in cases where identical or similar files are
stored on different disk images at different offsets, regardless of the partition alignment or
fragmentation. The choice of 512-byte sectors also maintains backward compatibility with
newer, advanced format drives using 4096-byte sector sizes, which will also be aligned to
512-byte boundaries (a 4096-byte sector is eight 512-byte sectors).

We processed each image in parallel on the Hamming HPC cluster (see Section 4.2). Due to
limitations on the number of active running jobs at a single time, we ran between 50 and 60
jobs simultaneously. Because hashdb maps memory during operation, a strategy that can
be problematic on cluster file systems such as lustre, each raw image had to be transferred
to a single compute node for each array job to be processed correctly. Transferring each
image to the compute node increased the communication cost of the jobs. However, we
incurred this penalty only once for each disk image, after which we discarded the local
copy and retained only the resulting hash database and logs necessary for analysis. These
results require approximately 1/7 of the storage space of the original data (to include log
and history files), and can be compressed to further reduce their footprint (requiring roughly
1/16 their original size).

31

Similarity Metrics

Two metrics were chosen to measure the similarity between each image: a multiset Jaccard
similarity and a set Jaccard similarity ranging from zero to onewhere a score near 1 indicates
high similarity and a score of 0 indicates no matching sectors (precise formulas for each
score are provided in Section 2.2.3).

Multiset Jaccard Similarity

To calculate the multiset Jaccard similarity metric, we create two new hash databases for
each pair: one of these databases represents the intersection of the two multisets of hashes,
and therefore contains only hashes that appear in both; the other represents multisets and
contains all hashes that appear in either multiset. We use the hashdb intersect_hash
command to create the former. We can then use the hashdb size command to find the
cardinality of the intersection of the two images. This becomes our numerator in the
similarity calculation. We create a new hash database containing the union of the two
databases using the hashdb add_multiple command and again find its cardinality with
the size command. Once the cardinality of the two multisets is calculated, simply dividing
the intersection by the union results in our multiset Jaccard similarity score. The sequence
and explanation of commands follows.

1. To create a new database <multiset_intersection> containing the hashes of the
intersection, we run:
hashdb intersect_hash <hashdb1> <hashdb2> <multiset_intersection>

2. To create a new database <multiset_union> containing the hashes of the union, we
run:
hashdb add_multiple <hashdb1> <hashdb2> <multiset_union>

3. To find the cardinality of the intersection, we run:
hashdb size <multiset_intersection>

4. To find the cardinality of the union, we run:
hashdb size <multiset_union>

5. Lastly, we calculate the multiset Jaccard similarity metric by:
Multiset Jaccard similarity = (result of step 3)/(result of step 4)

32

Set Jaccard Similarity
To calculate the set Jaccard similarity utilizing hashdb we follow a very similar process
as the multiset Jaccard similarity and create two new hash databases. However, instead of
allowing hashdb to create our new databases as in the previous commands, we first create
two databases with the -m 1 option to set the maximum distinct hash count of each database
to one. This limits the number of hashes inserted into the database to only one and will
not permit the insertion of additional hashes with the same value. Once these databases are
created, we follow the same steps as before. The sequence and explanation of commands
follows.

1. To create the hash database <set_intersection> with a maximum hash count set
to one, we run:
hashdb create -m 1 -p 512 <set_intersection>

2. To create the hash database <set_union> with a maximum hash count set to one,
we run:
hashdb create -m 1 -p 512 <set_union>

3. Calculate the set intersection of the two hash databases inserting the results into our
<set_intersection> database
hashdb intersect_hash <hashdb1> <hashdb2> <set_intersection>

4. Calculate the set union of the two hash databases inserting the results into our
<set_union> database, we run:
hashdb add_multiple <hashdb1> <hashdb2> <set_union>

5. To find the cardinality of the intersection, we run:
hashdb size <set_intersection>

6. To find the cardinality of the union, we run:
hashdb size <set_union>

7. Lastly, we calculate the set Jaccard similarity metric by:
Jaccard similarity = (result of step 5) / (result of step 6)

Visualization
We graphed the results of both the multiset and set Jaccard similarity calculations to better
understand the relationships between disk images in our set. Treating our disk images
as nodes connected by edges with edge weights equal to the similarity score calculated

33

between each pair of images, we were able to visualize our dataset as an undirected graph
(see Section 2.2.4) In addition, we created graphs with metadata overlays for both the
country of origin and partition type of each image (see Figure 2.1).

4.4.2 Experiment 2: Duplicating Sector Hashes
Our second experiment tested whether we could isolate a set of sector hashes common to
all images in our dataset with non-zero similarity scores. This effort proceeded in two
phases. First, since any set of hashes common to all connected images in our graph must
be found on a fully-connected core of this graph, we used the k-core filter in Gephi to
determine the largest fully-connected component of the graph. Second, we used hashdb
to find the intersection of all sets of hashes corresponding to the disk images in the fully-
connected component. However, because hashdb does not allow the intersection of more
than two hash databases at a time, we recursively intersected pairs of hash databases, then
pairs of the resulting intersections, and so on such that each successive iteration halved the
number of databases remaining to be intersected to arrive at a single database containing the
intersection of all images represented in the fully-connected component (see Figure 4.2). In
addition, we also examined the filesystem of the images with sector hash matches for exact
matches (similarity scores equal to one) and images which have no connections with any
other images in our dataset looking for interesting cases.

Figure 4.2: Example workflow for recursive intersection of four hash
databases created from disk images.

34

4.4.3 Experiment 3: Frequency of Common Hashes
Our third experiment consisted of determining the frequency and distribution of repeating
hashes in our dataset. Examining the most frequently occurring sector-level matches will
provide context as to what high-level similarities are being represented by the matches.
It is possible that a small number of sectors are responsible for the majority of matches
across disk images as a result of a few commonly-occurring sectors. The file or type
of file represented by these sectors may then occur frequently across our disk images.
Alternatively, the matches may be produced across many sectors that all appear with about
the same frequency and thus contribute equally to thematching. In this case, the sourcesmay
result from common file headers or some low-entropy data structure that do not correspond
to meaningful content.

Most Frequently Occurring Hashes
To study the frequency with which hashes occur on multiple drives (and thus contribute
to edge weights in our graph) we constructed an aggregate database containing all such
hashes. Due to memory limitations, we cannot operate on the entire 100 images at the same
time as the size of hash databases becomes too large to manipulate efficiently. Empirically,
we found that our hardware, when operating on datasets larger than 1 billion hashes, began
to produce frequent page faults, greatly reducing the speed of database operations such as
merges and intersections, which require iterating through the entire set. Because of this
constraint, we could not follow the straightforward approach of merging all hashes into a
single database, then discarding hashes that appear on only one drive. Fortunately, because
most hashes occur only once, the set of hashes that appear on more than one disk image is
significantly smaller than the total set of hashes. For this reason, we developed an alternative
strategy for building our database in which we iteratively identified and discarded hashes
that appear on only one disk image.

Our method proceeded in three phases:

In phase 1, we began by creating, for each disk image in our test set, a database containing
exactly one of each distinct sector hash value found on the image (i.e., hashes of duplicate
sectors appearing on the same disk image are discarded). Next, we recursively merged
databases until the initial set was reduced to six databases of 2-4 hundred million hashes
each.

35

For ease of reference, we labeled the set of these six databases D, where D =

{d1, d2, d3, d4, d5, d6}.
Because the initial databases contained nomore than one of each type of hash, the number of
times a hash appears in a given database, di, corresponds exactly to the number of databases
merged to create di that contained that hash. Consequently, it also represents the count of
the number of disk images on which that hash appeared in the subset of disk images from
which di was created.

Hashes that appear more than once in our databases are certain to affect our similarity graph.
Hashes that appear exactly once are either irrelevant because they are globally unique within
the dataset, or locally unique hashes that have matches we have not yet discovered.

We separate these two groups of hashes by splitting each database into two parts, labeled
dia and dib, for each i ∈ {1, 2, 3, 4, 5, 6} where dia contains all hashes that appeared more
than once in di and dib contains all hashes that appeared exactly once in di.

Let A = {d1a, d2a, d3a, d4a, d5a, d6a} and B = {d1b, d2b, d3b, d4b, d5b, d6b}. All hashes in
any database in A are contributing to the edge weight of our similarity graph. We merge all
these databases to create the hash database matches_1.hdb.

In phase 2, we focus on finding hashes in the databases in B that were locally unique in the
corresponding database in D, but match hashes in other databases in B to which they have
not yet been compared. Since the databases in B are too large tomerge into a single database,
we proceed instead by performing pairwise intersections of all six databases in B to yield
15 databases containing any common hashes between the databases being compared. We
then merge these to create matches_2.hdb.

Finally, in phase 3, we focus on finding hashes in the databases in B that were locally unique
in the corresponding database in D, but match hashes in other databases in A to which they
have not yet been compared. Since all databases in A were merged into the matches_1.hdb
we intersect all databases in B with matches_1.hdb and merge the resulting six databases
to produce matches_3.hdb.

We then merge matches_1.hdb, matches_2.hdb and matches_3.hdb to produce a single
database, which we call all_matches.hdb. This database contains every type of hash that

36

appeared on more than one disk image in our original set, and the number of times it appears
corresponds with the number of images on which it was found.

4.4.4 Experiment 4: Repeating Sector Hashes
In our fourth experiment, we scanned individual images against the all_matches.hdb hash
database created in Experiment 3 (see Section 4.4.3) to find and inspect the content of
matching sector hashes across disk images. Graphing disk images based on similarity
score visualizes connectedness based on similarity scores (a score greater than zero will be
indicated by a edge drawn between the two images—see Figure 2.1). However, the property
of being fully-connected does not imply a non-empty intersection. For example, the three
sets:

A = {a, b}, B = {b, c},C = {c, a},

are fully-connected (have similarity scores greater than zero): A and B share element b, B

and C share element c, and A and C share element a. However, there is no single element
which is represented in each set (i.e., |A ∩ B ∩ C | is zero).

To find matching sectors across our dataset, we began by examining the SectorScope
interactive histogram which shows the count of sector-matches scanned from the individual
image against the database of known hashes. The graphical display represents sectors of the
disk image on the x-axis and the count of matching sectors on the y-axis (see Figure 4.1).
We can identify areas of interest based on the count of matching sectors. We zoom into areas
showing high concentrations of sector matches by highlighting the area on the histogram.
The tool SectorScope calculates the histogram bin size based on the pixel size of a given
zoom level and can be difficult to identify a specific number of exact matches across images
given an image with hundreds of millions of sectors due to the horizontal space necessary
to represent such a large image at such a fine granularity. Therefore, we choose where to
zoom in on the histograms based on the highest number of sectors at the furthest zoom
level. Once we have zoomed into the lowest level possible and have identified a contiguous
sequence of matching sectors, we then examine the hex dump of each sector match and the
sectors preceding it to attempt to correlate individual sector hashes with their corresponding
individual files. However, this process is dependent on the image containing a valid file

37

system to produce an accurate representation of files from sector hashes. The identified
matching sectors from SectorScope were then cross-referenced with the files occupying
those sectors in Autopsy when possible.

4.4.5 Experiment 5: Community Identification and Detection
In our fifth experiment, we grouped the images based on communities (i.e., operating
systems) and tested whether matching sector hashes were able to identify communities of
interest within our dataset. We chose images based off of matching sector hashes from
SectorScope scans against individual drives from Experiment 4 (see Section 4.4.4). We
determined the operating system of each image by examining its filesystem, if available,
and its various system files. If its filesystem was not intact, we attempted to identify the
operating system by searching its hex dump for various strings related to the different
operating system versions.

We first computed the multiset and set intersection of each image within its respective
community to determine the duplicate sector hashes shared by operating system. We then
performed pair-wise intersections of each community to examine the resulting multiset and
set of matching hashes between each community. If the result of the pair-wise intersection
between multisets decreased, we could determine there were differences between communi-
ties. However, if the multiset intersections increased, we could determine the communities
share sector-level hashes. Because some of the operating systems were unable to be deter-
mined, an increasing multiset may help identify previously unknown operating systems by
testing their multiset intersections against each community.

38

CHAPTER 5:
Results

The results of each of our five experiments contributed to our understanding of the sector-
level similarities in our dataset, and how these relate to higher-level relationships that
may be of interest to analysts. The overarching trajectory of our analysis is as follows:
once we succeeded in converting each of the drives in our dataset into a set of hashes
stored in a hashdb instance and performing our all-to-all pair-wise comparison of these sets
(Experiment 1), we proceeded to look for a common set of hashes present throughout the
similar disk images (Experiment 2) that might explain the very highly connected graphs
that resulted from the pair-wise comparison. Upon discovering that no such set existed,
we examined the frequency and distribution of the most common hashes in the whole set
(Experiment 3) with the aim of determining whether we could find a relatively small set
of hashes that—if not common to all the similar drives—at least played a dominant role in
producing most of the matches. Again, we hoped that this analysis would lead us to a small
core set of sectors that we could examine to explain the similarities between the majority
of the disk images. However, the matches were not highly concentrated in most cases, but
were distributed across many hashes that matched just a few times. Instead, we moved
from matches based on similarity scores to matches at the disk-level view (Experiment 4)
and came up with our theory that the commonality was based on operating system version,
which we determined was sufficient in explaining higher-level similarities in our dataset
(Experiment 5). This chapter presents a detailed description of the analysis of each of our
experiments. Accordingly, it is divided into sections corresponding to each, as follows:

1. Experiment 1: Summary statistics of similarity scores and visualization
2. Experiment 2: Common set of hashes across dataset
3. Experiment 3: Frequency and distribution of common hashes
4. Experiment 4: Matching sector-level hashes across dataset
5. Experiment 5: Common set of hashes by communities

39

5.1 Experiment 1: Summary Statistics of Similarity
Scores and Visualization

We begin our discussion of the results of experiment 1 by examining summary statistics for
our multiset and set Jaccard similarity metrics. We then visualize the results as graphs to
better understand the connectedness of our dataset.

5.1.1 Summary Statistics
Examining the histograms for multiset (Figure 5.1) and set (Figure 5.2) Jaccard similarity
scores, we can see a majority of the scores are less than 0.01 for both the multiset (2,189)
and set (2,572) Jaccard similarity scores. We can also see that there are only 176 multiset
and 44 set similarity scores greater than 0.10. Given such small scores, we can begin
to understand how small the number of intersecting sector hashes are between images as
compared to the total number of hashes of each image combined. Also, a high number
of similarity scores are zero (1,832) showing not all images in our dataset contain shared
sectors with other images.

Figure 5.1: This histogram shows the frequency of non-zero multiset Jaccard
similarity scores calculated for our 100 pair-wise calculations. Note the high
number of scores less than 0.01 and fairly even distribution between bins
greater than 0.01.

40

Figure 5.2: This histogram shows the frequency of non-zero set Jaccard
similarity scores calculated for our 100 pair-wise calculations. Although the
scores are lower than the multiset similarity scores overall, the distribution
is similar.

As shown by the summary statistics in Table 5.1, the multiset and set Jaccard similarity
scores span the full range of possible values between zero and one, but are strongly concen-
trated toward the lower end of the spectrum. The multiset mean is 0.0137022 compared to
0.0053746 for the set mean, and the multiset median is 0.0000145 compared to 0.0000005
for the set median. Treating each hash as a type in our set calculation resulted in overall
lower values when compared to the multiset calculation, where each hash is treated as a
token, due to the counting of each hash only once. We can also see that our dataset contains
at least one exact match (similarity score equal to one) and the most frequently appearing
similarity score was zero for both the multiset and set Jaccard similarity scores (1,832).

Differentiating the two similarity scores based on our summary statistics does not provide
conclusive evidence that either metric is capturing the similarity between disk images
better than the other, but the multiset similarity does seem to provide more information
for distinguishing between the strength of the matches (not as many scores are clumped
together in the 0.01 bin) and shows a more even distribution among bins.

41

Multiset Jaccard Similarity Set Jaccard Similarity
Minimum 0.0000000 0.0000000
Quartile 1 0.0000000 0.0000000
Quartile 2 0.0000145 0.0000005
Quartile 3 0.0064589 0.0015949
Quartile 4 1.0000000 1.0000000
Maximum 1.0000000 1.0000000
Mean 0.0137022 0.0053746
Median 0.0000145 0.0000005
Mode 0.0000000 0.0000000

Table 5.1: Summary statistics calculated for our multiset and set Jaccard
similarity metrics.

5.1.2 Graphs
We visualize the similarities by constructing graphs representing the images as nodes (with
corresponding country of origin) with the edge weights equal to the multiset and set Jaccard
similarity metrics (shown in Figure 5.3a and Figure 5.3b). After applying the Fruchterman
Reingold algorithm [16] and color-coding based on the modularity class algorithm of
Blondel et al. [17], we made three immediate observations:

1. A large majority of the images were highly connected among each other
2. A small number of the images had no connections
3. A small number of the images were tightly connected with only each other

Israel (IL) 30
China (CN) 22
Thailand (TH) 13
Bangladesh (BD) 8
Pakistan (PK) 7
Hungary (HU) 7
United Arab Emirates (AE) 6
Bosnia and Herzegovina (BA) 3
Bahamas (BS) 3
Egypt (EG) 1

Table 5.2: Disk images categorized by country of purchase.

42

Apple 1
Linux 1
DOS FAT16 12
Win95 FAT32 32
NTFS 24
pCache 1
Unknown 29

Table 5.3: Disk images categorized by partition type.

We still do not know what is causing the underlying similarities between images or which
similarity score is better representing the dataset. In an attempt to identify a correlation
between the images and metadata associated with each image, we collected the country
of origin (Table 5.2) and partition type (Table 5.3) for each image. The majority of the
images were purchased in Israel (IL), China (CN), and Thailand (TH) with 30, 22, and
13 images originating from each country, respectively. Visualizing the dataset with the
metadata overlay is helpful in identifying patterns within clusters by examining different
categories.

To determine if onemetric better represents the high-level features of our dataset, we created
four graphs (one for each metric for both country of origin and partition type) to see if one
better aligned the overlay with the structure and grouping of each graph. We first created
two graphs for both the multiset and set Jaccard similarity scores showing the country of
purchase for each image (Figure 5.3a and Figure 5.3a). However, given the large tightly
connected component of the graph and the diversity in the country of purchase for each
image, categorizing the images based on country provided little correlation except in the
cases of exact matches (see Section 5.2.2) and interesting cases as in the two isolated nodes
labeled CN in the bottom right-hand corner of Figure 5.3 (see Section 5.2.4).

Second, we constructed two graphs for both the multiset (Figure 5.4a) and set (Figure 5.4b)
Jaccard similarity scores showing partition type as determined by the mmls command. In
these graphs, we begin to see correlations emerge between the colored communities and
partition type. For example, within the largest cluster, images created with NTFS partitions
tend to cluster around other NTFS partitions. We also see Win95 FAT32 and DOS FAT16
partitioned images placed toward the outside of the large cluster and into the outer edges of

43

1 - IL

2 - TH 3 - BS

4 - TH

5 - BD

6 - BA

7 - IL

9 - IL

10 - AE

11 - PK

12 - BD 13 - CN

14 - IL 15 - CN

16 - IL

17 - HU

18 - TH

20 - IL

21 - AE

22 - IL

25 - IL

27 - IL

28 - CN

29 - IL

30 - IL

33 - HU

35 - TH

36 - TH

37 - CN
38 - TH

39 - PK

42 - CN

43 - TH

45 - IL

46 - CN52 - BD
53 - PK

54 - AE

55 - CN

56 - TH

59 - IL
60 - TH

62 - CN

63 - AE

64 - BD

65 - IL

66 - TH

68 - IL

69 - IL

70 - CN

72 - BA

73 - CN
74 - HU

75 - EG

76 - BS

77 - BD
78 - IL

79 - BS

80 - IL

81 - TH

83 - IL
84 - PK

85 - AE

86 - IL

87 - HU

88 - CN

89 - TH

91 - IL

92 - IL

93 - IL

94 - CN

95 - IL

96 - IL

98 - BD

99 - CN

100 - AE

32 - CN

34 - CN

41 - IL
51 - CN

67 - IL
23 - PK

24 - BD

40 - TH

47 - PK

71 - BD

82 - PK

48 - CN

8 - HU 57 - HU

90 - HU

44 - IL

19 - CN

26 - CN

31 - CN

49 - BA

50 - CN

97 - CN

58 - IL

61 - IL

(a) Multiset Jaccard Similarity

1 - IL

2 - TH

3 - BS

4 - TH

5 - BD

6 - BA

7 - IL

9 - IL

10 - AE

11 - PK

12 - BD

13 - CN

14 - IL

15 - CN

16 - IL

17 - HU

18 - TH

20 - IL

21 - AE

22 - IL

25 - IL

27 - IL

28 - CN

29 - IL

30 - IL

33 - HU

35 - TH

36 - TH

37 - CN

38 - TH
39 - PK

42 - CN
43 - TH

45 - IL

46 - CN

52 - BD

53 - PK

54 - AE

55 - CN

56 - TH

59 - IL
60 - TH

62 - CN

63 - AE

64 - BD

65 - IL

66 - TH

68 - IL 69 - IL

70 - CN

72 - BA

73 - CN

74 - HU

75 - EG

76 - BS

77 - BD

78 - IL

79 - BS

80 - IL

81 - TH

83 - IL

84 - PK

85 - AE

86 - IL

87 - HU

88 - CN

89 - TH

91 - IL

92 - IL

93 - IL

94 - CN

95 - IL

96 - IL

98 - BD

99 - CN

100 - AE

32 - CN

34 - CN

41 - IL

51 - CN

67 - IL

23 - PK

24 - BD

40 - TH

47 - PK

71 - BD

82 - PK

48 - CN

8 - HU

57 - HU90 - HU

44 - IL

19 - CN

26 - CN

31 - CN

49 - BA

50 - CN

97 - CN

58 - IL

61 - IL

(b) Set Jaccard Similarity

Figure 5.3: Side-by-side comparison of multiset and set Jaccard similarity
graphs. These graphs represent each node as the image’s number and coun-
try of origin with edge weights as calculated using the multiset (left) and
set (right) Jaccard similarity metrics. The graph was positioned through the
Fruchterman Reingold algorithm [16] and color-coded based on the modular-
ity class algorithm of Blondel [17]. Notice the similarity in overall structure
between the two graphs, despite the fact that the edge weights were cal-
culated differently. In contrast, the community coloring of the left graph
appears to distinguish partition types more effectively.

the graph. Since a fairly high number of partitions are unknown, it is difficult to know how
well the clustering is identifying communities based on partition type, but we do begin to
notice patterns emerge from some underlying characteristic of the images (e.g., partition
type, operating system, applications).

The apparent link between partition type and the communities identified by the modularity
class algorithm from Blondel et al. ultimately persuaded us to favor the set similarity metric
over the multiset similarity scores. Figure 5.4 shows a side-by-side comparison of the
multiset and set Jaccard similarity graphs with the partition-type overlay. We can see the

44

structure of the two graphs are quite similar. Both contain a large cluster of similar images
in the center of the graph and the placement of the images on the outer edge are very similar.
However, differences appear in how the community detection algorithm determined the
classifications (i.e., coloring) between our similarity metrics. The algorithm detected 10
communities for our multiset calculation and eight communities for our set calculation.
With 29 unknown partition types, its difficult to tell how many communities actually exist
within our dataset. However, in general, the algorithm correctly grouped the NTFS and
DOS FAT16 partition types in their own community but split the Win95 FAT32 partition
types across the NTFS and DOS FAT16 communities. This could mean images withWin95
FAT32 partition types are more similar (and have overlapping sector-level hashes) with the
NTFS and DOS FAT16 partition types making it difficult for the algorithm to properly
classify a community for Win95 FAT32 partitions.

5.2 Experiment 2: Common Set of Hashes Across Dataset
Our dataset did not contain any hashes that are present on every image, as shown in
Figure 5.3, where some images are not connected to any other in our dataset (similarity
score equal to zero for all other images). However, we could see a large portion of the
images were highly connected and clustered together towards the middle of the graph and
appeared to be fully-connected. Our second experiment attempted to identify a common
set of sectors shared by the disk images in this connected cluster, as well as to examine the
meaning of other distinctive structures in the similarity graph.

5.2.1 Fully-Connected Component
Using the k-core filter in Gephi, we were able to determine the largest fully-connected
component within our dataset—a subgraph containing 67 images. We hypothesized that
there was at least one sector-level hash contained on all images in the fully-connected
subgraph given all non-zero similarity scores. However, after completing the intersection
of each image in the subgraph, there were not any hashes that were common to all images
in this subgraph. This was surprising: we expected to find that at least one sector would be
shared across the entire set due to similar operating system files or low-entropy artifacts.

Because the fully-connected component of our graph based on similarity scores did not

45

Linux

NTFS NTFS

NTFS

Win95 FAT32

Unknown

DOS FAT16

Unknown

NTFS

Win95 FAT32

Unknown Unknown

NTFS Unknown

NTFS

Unknown

NTFS

pCache

NTFS

NTFS

Win95 FAT32

Win95 FAT32

Win95 FAT32

DOS FAT16

NTFS

Unknown

Win95 FAT32

Win95 FAT32

Unknown
NTFS

Win95 FAT32

Unknown

NTFS

NTFS

Win95 FAT32Win95 FAT32
Win95 FAT32

NTFS

DOS FAT16

NTFS

DOS FAT16
NTFS

Unknown

Win95 FAT32

Unknown

NTFS

Unknown

NTFS

DOS FAT16

DOS FAT16

Apple

Win95 FAT32
Unknown

Win95 FAT32

Win95 FAT32

Win95 FAT32
Win95 FAT32

NTFS

Win95 FAT32

Win95 FAT32

NTFS
Win95 FAT32

NTFS

Win95 FAT32

Unknown

Win95 FAT32

NTFS

Win95 FAT32

Win95 FAT32

Win95 FAT32

Unknown

Unknown

Win95 FAT32

Win95 FAT32

Unknown

NTFS

DOS FAT16

DOS FAT16

Unknown
NTFS

DOS FAT16
Win95 FAT32

Win95 FAT32

DOS FAT16

Win95 FAT32

Win95 FAT32

Win95 FAT32

DOS FAT16

Unknown Unknown

Unknown

Unknown

Unknown

DOS FAT16

Unknown

Unknown

Unknown

Unknown

Unknown

Unknown

(a) Multiset Jaccard Similarity

Linux

NTFS

NTFS

NTFS

Win95 FAT32

Unknown

DOS FAT16

Unknown

NTFS

Win95 FAT32

Unknown

Unknown

NTFS

Unknown

NTFS

Unknown

NTFS

pCache

NTFS

NTFS

Win95 FAT32

Win95 FAT32

Win95 FAT32

DOS FAT16

NTFS

Unknown

Win95 FAT32

Win95 FAT32

Unknown

NTFS
Win95 FAT32

Unknown
NTFS

NTFS

Win95 FAT32

Win95 FAT32

Win95 FAT32

NTFS

DOS FAT16

NTFS

DOS FAT16
NTFS

Unknown

Win95 FAT32

Unknown

NTFS

Unknown

NTFS DOS FAT16

DOS FAT16

Apple

Win95 FAT32

Unknown

Win95 FAT32

Win95 FAT32

Win95 FAT32

Win95 FAT32

NTFS

Win95 FAT32

Win95 FAT32

NTFS

Win95 FAT32

NTFS

Win95 FAT32

Unknown

Win95 FAT32

NTFS

Win95 FAT32

Win95 FAT32

Win95 FAT32

Unknown

Unknown

Win95 FAT32

Win95 FAT32

Unknown

NTFS

DOS FAT16

DOS FAT16

Unknown

NTFS

DOS FAT16

Win95 FAT32

Win95 FAT32

DOS FAT16

Win95 FAT32

Win95 FAT32

Win95 FAT32

DOS FAT16

Unknown

UnknownUnknown

Unknown

Unknown

DOS FAT16

Unknown

Unknown

Unknown

Unknown

Unknown

Unknown

(b) Set Jaccard Similarity

Figure 5.4: Side-by-side comparison of multiset and set Jaccard similarity
graphs. These graphs represent each node as the image’s partition type
with edge weights as calculated using the multiset (left) and set (right) Jac-
card similarity metrics. The graph was positioned through the Fruchterman
Reingold algorithm [16] and color-coded based on the modularity class al-
gorithm of Blondel [17]. Notice the similarity in overall structure between
the two graphs, despite the fact that the edge weights were calculated dif-
ferently. In contrast, the community coloring of the left graph appears to
distinguish partition types more effectively.

contain sector hashes present on each image, we believed low weight edges may affecting
our perception of the graph. Given that an edge is drawn between images even if only one
hash matches, it is entirely possible that low weight edges may be adding lots of edges.
As we filter each graph showing edge weights only above the mean (shown in Figure 5.5),
we start to see which images are more strongly connected. If only a small number of
hashes match between images, the graph draws an edge between the two images. However,
by removing the low edge weights results, we start to see which images are more similar
drawing our attention again to the large cluster in the middle and the images which are exact
matches around the edges.

46

Linux

NTFS

NTFS

NTFS

Win95 FAT32

Unknown

DOS FAT16

Unknown

NTFS

Win95 FAT32

Unknown

Unknown

NTFS

Unknown

NTFS

Unknown

NTFS

pCache

NTFS

NTFS

Win95 FAT32

Win95 FAT32

Win95 FAT32

DOS FAT16

NTFS

Unknown

Win95 FAT32

Win95 FAT32

Unknown

NTFS
Win95 FAT32

Unknown
NTFS

NTFS

Win95 FAT32

Win95 FAT32

Win95 FAT32

NTFS

DOS FAT16

NTFS

DOS FAT16
NTFS

Unknown

Win95 FAT32

Unknown

NTFS

Unknown

NTFS DOS FAT16

DOS FAT16

Apple

Win95 FAT32

Unknown

Win95 FAT32

Win95 FAT32

Win95 FAT32

Win95 FAT32

NTFS

Win95 FAT32

Win95 FAT32

NTFS

Win95 FAT32

NTFS

Win95 FAT32

Unknown

Win95 FAT32

NTFS

Win95 FAT32

Win95 FAT32

Win95 FAT32

Unknown

Unknown

Win95 FAT32

Win95 FAT32

Unknown

NTFS

DOS FAT16

DOS FAT16

Unknown

NTFS

DOS FAT16

Win95 FAT32

Win95 FAT32

DOS FAT16

Win95 FAT32

Win95 FAT32

Win95 FAT32

DOS FAT16

Unknown

UnknownUnknown

Unknown

Unknown

DOS FAT16

Unknown

Unknown

Unknown

Unknown

Unknown

Unknown

Figure 5.5: Set Jaccard similarity visualization by partition type with edge
weight filter. This graph represents each numbered node by the country
of its purchase, showing only edge weights above the mean (0.0053746)
as calculated using the set Jaccard similarity. The graph was positioned
through the Fruchterman Reingold algorithm [16] and color-coded based on
the modularity class algorithm of Blondel [17].

5.2.2 Exact Matches
Investigating our dataset, we found three sets of exactly matching images (two sets of two
images and one set of three images). The first set of two images included image number 23
and 82 (see the bottom left of Figure 5.4, where these two nodes are connected by a thick
cyan edge). The intersection of these two hash databases contained 30 total hashes with 12
distinct hashes. These two images were both purchased in Pakistan (PK) and had Win95
FAT 32 partition types. Interestingly, the second set of exactly matching images, numbered
24 and 71, also contained 30 total hashes with 12 distinct hashes. However, these two
images were both purchased in Bangladesh (BD) but did also have Win95 FAT 32 partition
types. Each image was 10 gigabytes in size, signifying most of the sectors were zero-filled
and were skipped by the bulk_extractor scanner, which ignores empty sectors by default.
These four images, in addition to image 47 (bought in PK with a Win95 FAT 32 partition
type) are closely grouped on the outer edge of Figure 5.4, and loosely grouped with the
highly connected component of the graph. Further examination in Autopsy showed each
drive was most likely formatted (very few sector hashes) and had four separate partition

47

tables that were invalid or unrecognized.

The third set of matching images contained three images numbered 8, 57, and 90. The
intersection of these three images contained 8,847,360 total hashes with only 6 distinct
hashes. These three images were purchased in Hungary (HU) and had unknown partition
types. While the filesystem was corrupted, it appeared these drives were all formatted and
had repeating sectors. Further examination of the hexdump of each image showed the 10-
character string “#ERASED# ” repeated over all non-zero sectors of the disk with the string
“by CHG” added at the end of certain sectors. It appears each disk was formatted using
the same technique of writing the string continuously throughout the disk. The 5 different
alignments of the “#ERASED# ” string combined with the final signature produced the six
distinct sector types we observed.

5.2.3 No Matches
Four images were not matches to any drive in the dataset including image number 31 (CN),
49 (Bosnia and Herzegovina (BA)), 58 (IL), and 61 (IL). All had unknown partition types,
corrupted filesystems, and no discernible strings output except image 61. It appeared to
have Windows XP installed based on its header information, but was either formatted or
corrupted based on our attempts to examine its file system.

5.2.4 Interesting Matches
Two additional images, 50 and 97, were matches only to themselves and their similarity
scores were quite high (multiset similarity of 0.75 and set similarity of 0.60). Interestingly,
these two images were not connected to any other images in the entire dataset, were both
purchased from China (CN), and both had an unknown partition type. Each had a corrupted
filesystem and no discernible strings (most likely due to strings not supporting unicode
for Chinese characters).

5.3 Experiment 3: Frequency and Distribution of Com-
mon Hashes

Up to this point, we have seen that there does not exist a hashwhich is present on every image
in the dataset, nor within the fully-connected subgraph, but we have seen a large number

48

of similar images within the large cluster and edge cases by using a low-weight edge filter
to identify highly similar connections. To identify which high-level similarities are being
represented by the matches, we begin by examining the frequency and distribution of our
commonly-occurring sectors. Figure 5.6 shows the cumulative distribution function (CDF)
of hashes that appeared on more than one disk image and the number of images that
contained each hash. The total number of hashes that appear on more than one disk image
in our original set of 100 images is 99,412,503, with the 2 most frequently occurring hash
appearing on 63 drives. This confirms our observation that there is no single hash present
on every image, either in the original 100 or in the highly connected component of 67 nodes.
Further, the majority of duplicates are produced by hashes that are themselves relatively
rare. Almost 50% (46,843,448) of hashes appear on only two drives, and 90% of hashes
appear on eight or fewer drives across the whole set. Hashes that appear on more than one
drive are few.

Figure 5.6: This graph shows the cumulative distribution function of dupli-
cate sector hashes by the number of disk images. The largest number of
duplicate sector hashes starts with two images and reaches 98.5% at around
20 images.

49

5.4 Experiment 4: Matching Sector-Level Hashes Across
Dataset

With the observation that there were no sector hashes that appeared on every image of our
fully-connected subgraph, and no major subset of sectors was responsible for a majority
of the edges, we inspected the sector hashes represented in the thin tail of Figure 5.6,
corresponding to the sectors that appear on the greatest number of drives. While no one
hash contained in every image of the fully-connected subgraph, hashes frequently occurring
should tend to be very common files within the dataset. Given that the majority of the
partition types are Windows-related, we hypothesized that large counts of sector hash
matches occurred as a result of common system files installed on each image.

We scanned individual images against our known set of duplicate hashes from Experiment
3 in SectorScope to identify images containing frequently occurring contiguous sector
matches. Scanning image seven against our database resulted in a high number of contiguous
sectormatches on 56 other images. The large number of sectormatches among this grouping
of 57 images allowed us to determine which files correlate to these matching sectors and
show up frequently among a large grouping of images. The histogram output for our
scanned image (shown in Figure 5.7) is at the highest zoom level and represents the entire
disk image. Most of the sector hash matches appear at the beginning of the disk image
and indicate the location of system files. The height of the histogram is a function of the
number of matching hashes in a single bin (i.e., a pixel width, which represents a fraction,
depending on the zoom level, of the total disk image length) and the number of times each
match appears in the database. At the greatest magnification, where one bin represents a
single sector, the height of the bar indicates how many disk images in the dataset contained
the hash at that location (since our hash database was designed to contain no more than one
copy for each disk image.

We started by investigating the highest number of matching contiguous sectors of our
scanned image seven against our database of known duplicate hashes focusing on the 56
images we knew to be highly similar. Close inspection of the hex dump of these frequently
occurring matching sector hashes of the scanned image revealed that every sector of the
highest matching hashes started its hex dump with hex “4D 5A,” which is the magic number
for MS-DOS, OS/2, and MS Windows (magic numbers are the first bits of a file which

50

Figure 5.7: SectorScope histogram for scanned image against database of
known duplicate hashes. SectorScope shows the number of sectors matching
as a histogram moving through the sectors of the hard disk image along the
x-axis. At the highest zoom level, the histogram represents the entire disk
image. The height of the histogram is a function of the number of match-
ing hashes in a single bin (i.e., a pixel width, which represents a fraction,
depending on the zoom level, of the total disk image length) and the num-
ber of times each match appears in the database. Most of the sector hash
matches appear at the beginning of the disk image and indicate the location
of system files.

uniquely identify the type of file). While our current toolset does not provide a trivial way
to move between hashes of sectors and files, we were able to locate and determine the files
associated with the highest matching sector hashes by identifying the offset in SectorScope
and correlating it with the filesystem output of Autopsy. The first 10 files associated with the
highest matching sector hashes were common DLL files for the Windows operating system.
These 10 files appeared on at least 52 of the 57 images being analyzed. This confirmed our
hypothesis that common system files for the same operating system would have the same
hashes, which increases the similarity score between images of similar operating systems.
The 57 identified images had partition types of DOS FAT16 (6), Win95 FAT32 (20), NTFS
(14), and Unknown (17), which confirms the likelihood of seeing common system files
based on Windows-related operating systems.

Interestingly, as we started to examine the duplicate hashes with lower match-rates, it be-
came apparent that versions of common windows files were distinguishable. For example,
examining the version of command.com led to only 32 images sharing the same default

51

operating system shell version 6.22. Also of interest, some of the more common win-
dows executables (e.g., format.exe, scandisk.exe, find.exe, fdisk.exe, msbackup.exe) started
to match sector-level hashes of other images purchased from the same country. In our
SectorScope scans of images purchased in IL, we started to see these executables’ sector
hashes match only with other images from the same country, which could possibly explain
differences in common system files due to language differences between operating system
versions.

5.5 Experiment 5: Common Set of Hashes by Community
We identified the operating system of our 57 images from Experiment 4 (see Section 5.4)
to see if sector-level hashes were distinguishable between each grouping. In doing so, the
summary of operating systems included Windows 95 (2), Windows 98 (12), Windows XP
(26), and Unknown (17), as shown in Table 5.4.

Windows 95 2
Windows 98 12
Windows XP 26
Unknown 17

Table 5.4: Operating system counts of our subset of 57 images.

Multiset Set
Windows 95 258,027 46,360
Windows 98 551,126 189
Windows XP 251,021 172
Unknown 238,254 14

Table 5.5: Count of hashes in the intersection of all drives in our subset of
57 images with common operating systems.

We then graphed the set Jaccard similarity scores with the partition and operating system
using the Force Atlas [44] layout algorithm to determine if operating system was a better
indicator than partition type as an overlay (see Figure 5.8 for the overall structure and
community coloring). Upon examining the layout, we noticed the images containing
Windows XP were tightly clustered in the left-center and Windows 95 and Windows 98

52

Windows 95 Windows 98 Windows XP Unknown
Windows 95 258,027 156,246 208,690 233,315
Windows 98 551,126 379,240 376,709
Windows XP 251,021 402,632
Unknown 238,254

Table 5.6: Count of hashes in the multiset intersection of all drives in our
subset of 57 images when grouped by operating systems. Note that the
number of hashes in the intersection declines significantly, indicating that
drives with the same operating system have more in common with each
other than they do with drives of other operating systems.

Windows 95 Windows 98 Windows XP Unknown
Windows 95 46,360 75 69 10
Windows 98 189 56 5
Windows XP 172 11
Unknown 14

Table 5.7: Count of distinct hashes in the set intersection of all drives in
our subset of 57 images when grouped by operating systems. Here as in
Figure 5.6, we see a decline in common hashes in the intersections of disk
images with different operating systems, as compared to the intersections of
images in the same system. Working with types instead of tokens highlights
this relationship even more clearly.

were clustering around the edges, which confirmed our belief that operating systems files
were contributing to similarity scores (see Figure 5.9 for the magnified portion of the
graph). While the partition type contributes to the overall grouping of the graph, searching
by operating system yields a better explanation for the concentration of clustering.

We then analyzed the intersecting hashes of each operating system as multisets and sets
(Table 5.5). The higher counts in the multiset column when compared to the set column
indicates each grouping contains a large number of duplicate hashes. The Windows 95
grouping has significantly higher amounts of locally distinct hashes (46,360) than the other
groupings; the small number of locally distinct hashes within the unknown operating sys-
tems (14) most likely indicates a diverse set of operating systems included in the group. We
calculated the intersection between each operating system to determine similarity between

53

Linux - --

NTFS - XP

NTFS - UNK

NTFS - XP

Win95 FAT32 - WIN98

Unknown - --

DOS FAT16 - XP

Unknown - UNK

NTFS - XP

Win95 FAT32 - --

Unknown - UNK

Unknown - --

NTFS - UNK

Unknown - XP

NTFS - XP

Unknown - UNK

NTFS - XP

pCache - UNK

NTFS - XP

NTFS - XP

Win95 FAT32 - XP

Win95 FAT32 - UNK

Win95 FAT32 - --

DOS FAT16 - WIN98

NTFS - XP

Unknown - UNK

Win95 FAT32 - --

Win95 FAT32 - --

Unknown - --

NTFS - XP

Win95 FAT32 - --

Unknown - UNK

NTFS - XP
NTFS - XP

Win95 FAT32 - XP

Win95 FAT32 - --

Win95 FAT32 - WIN98

NTFS - XP

DOS FAT16 - --

NTFS - UNK

DOS FAT16 - WIN95

NTFS - XP

Unknown - UNK

Win95 FAT32 - UNK

Unknown - --

NTFS - XP

Unknown - UNK

NTFS - XP

DOS FAT16 - WIN95

DOS FAT16 - --

Apple - --

Win95 FAT32 - WIN98

Unknown - UNK

Win95 FAT32 - XP

Win95 FAT32 - --

Win95 FAT32 - WIN98

Win95 FAT32 - XP

NTFS - XP Win95 FAT32 - WIN98

Win95 FAT32 - WIN98

NTFS - XP

Win95 FAT32 - WIN98

NTFS - XP

Win95 FAT32 - WIN98

Unknown - UNK
Win95 FAT32 - XP

NTFS - XP

Win95 FAT32 - UNK

Win95 FAT32 - UNK

Win95 FAT32 - WIN98

Unknown - --

Unknown - UNK

Win95 FAT32 - WIN98

Win95 FAT32 - WIN98

Unknown - --

NTFS - --

DOS FAT16 - --

DOS FAT16 - --

Unknown - --

NTFS - --

DOS FAT16 - --

Win95 FAT32 - --

Win95 FAT32 - --

DOS FAT16 - --

Win95 FAT32 - --

Win95 FAT32 - --
Win95 FAT32 - --

DOS FAT16 - --

Unknown - --
Unknown - --

Unknown - --

Unknown - --

Unknown - --
DOS FAT16 - --

Unknown - --

Unknown - --

Unknown - --
Unknown - --

Unknown - --
Unknown - --

Figure 5.8: Set Jaccard similarity visualization by partition type and op-
erating system. This graph is provided to show the overall structure and
coloring. The graph was positioned through the Force Atlas algorithm [44]
and color-coded based on the modularity class algorithm of Blondel [17].

54

Figure 5.9: Set Jaccard similarity visualization of partition type and Windows
operating system. This graph is a zoomed in portion of Figure 5.8. It
shows clustering of images containing Windows XP images in the center and
Windows 95 and Windows 98 moving outward to the right. The graph was
positioned through the Force Atlas algorithm [44] and color-coded based on
the modularity class algorithm of Blondel [17].

communities in Table 5.6 (allowing duplicate hashes) and Table 5.7 (showing only distinct
hashes). We again see a large number of duplicate hashes between each grouping of oper-
ating system. However, we can now identify matching hashes exclusive to each operating
system and matching hashes that overlap between operating systems. The number of hashes
in the intersection declines significantly, indicating that images with the same operating
system have more in common with each other than they do with images of other operating
system versions. The only multiset intersection that does not decrease is between Windows
XP and the unknown operating systems. In addition, the set intersection between Windows
XP and the unknown operating systems includes 11 of the 14 locally distinct hashes con-
tained in the unknown operating system. We believe it is possible that a high number of the
unknown operating systems actually contain Windows XP and our inability to determine

55

their operating systems is causing us to separate the two communities. This provides a
possible method of identifying an unknown image by intersecting individual images against
our sets of known communities and examining the resulting number of distinct hashes.

56

CHAPTER 6:
Conclusion

6.1 Summary
Digital forensic practitioners need the ability to compare mass amounts of digital media
in a practical and efficient manner. As the amount of digital media grows, so to do the
domains in which digital forensics can be applied. Law enforcement, intelligence agencies,
and incident response teams in military and business organizations need a way to correlate
large amounts of digital media to determine similarity, detect patterns, and effectively triage
large volumes of digital evidence.

Traditional digital forensic methods involved individual analysts examining individual hard
drive images. The accelerated growth rate of digital media and increase in cyber incidents
has forced practitioners to move toward automated tools and bulk analysis. This shift in
approach has evolved from using cryptographic hashes to determine matches of entire files,
to segments of files, to blocks of raw data. The introduction of hash-based carving by
Garfinkel and McCarrin [24] suggests the possibility of developing methods that avoid the
need to parse the filesystem for exact matches of logical files. Since the reliance of matches
has moved beyond the individual file, or pieces of the file, matches are based off blocks of
data and are filesystem agnostic.

In our experiment, we built on the concepts employed in prior research into hash-based
carving to create hash databases representing a subset of 100 hard disks in the RDC. Using
set theory operations, we calculated pair-wise comparisons of each drive in the subset
to create 4,950 similarity scores for a multiset and set Jaccard similarity metric ranging
between zero and one. We graphed the results representing images as nodes and edge
weights as the similarity score and determined the similarity score was an effective means
to explore our dataset.

The graph provided key insights into our dataset, showing a large majority of the images
were highly connected among each other (of our 100 images, 67 were fully connected),
a small number of the images had no connections, and a small number of the images

57

were tightly connected with only each other. However, there was no single hash that was
represented in every image. Therefore, we examined the most frequently seen hashes to
determine which sectors were matching between the images. Scanning individual images
against a database of known duplicate hashes, we were able to identify a subset of 57
images that contained high numbers of contiguous matching sector-level hashes. Further
examination of these 57 images showed the top 10 most occurring sector hashes represented
were common DLL files from the Microsoft Windows operating system. Each of these 10
common system files was represented on at least 52 of the 57 images, and provided partial
explanation as to the underlying cause of similarity. Further examination of the subgraph
allowed the identification and grouping by operating system. In doing so, we were able to
identify hashes exclusive to certain versions of operating system as well as sector hashes that
matched across different versions of operating system. Examination of these hashes leads
to potential possibilities of categorizing newly acquired disk images by operating system
and version by establishing known communities of matching hashes.

We find that sector-based matching is sufficient to identify drives sharing common DLLs,
which indicates similarity in their operating systems, and could therefore be used to corrob-
orate deductions regarding characteristics of information systems associated with the target
media. This capability may provide insight into the community infrastructure, behavior or
characteristics of organizations from which drives were collected. For example, matching
a newly acquired drive to a cluster of similar drives might give a quick indicator of how
recently an organization has updated or patched their software. If these operating system-
related similarities were to be filtered out, this approach might prove useful in identifying
other important similarities across large collections of drives, such as virus infections or
common user data, though this experiment was beyond the scope of the current work (in
part because there is no such relationship expected among drives in the RDC).

6.2 Future Work
There are many areas of further investigation suggested by our analysis. The sample size
was restricted by computational limits associated with our tools. Our analysis would,
otherwise, benefit from a more diverse set of images. One recommendation is to use our
methodology with known images representing a larger population, especially with respect
to operating systems and versions. Based on our findings, sector hashes of known operating

58

system and version should exhibit higher similarity scores. Matching against clusters where
the base operating system is known could lead to better categorization of images. In our
initial experiments, we tested against used drives to simulate the environment likely to be
encountered by forensic analysts. However, in future work researchers hoping to discover
operating system signatures might instead create a dataset of images containing unused
operating system installations with various patch levels to create more informative clusters,
and perhaps ultimately to build signatures of sectors that characterize each operating system
version.

In addition, while our methodology faces limitations in processing pair-wise comparisons
for large amounts of disk images, it would be beneficial to expand our methodology into a
cloud computing infrastructure where the set operations is conducted in the cloud with a
local hash database functioning as a cache containing the most important or immediately
useful sectors. While hashdb is an adequate tool to store the computed hash databases,
computing set intersections, and more importantly set unions, can become too large for the
software to handle at around 1.5 billion hashes. The identification of a set of hashes that
could be used as a noise filter is one example of a case where the process of identifying the
hashes might require distributed computation, but the outcome might be stored in a local
hashdb instance.

The calculation of similarity metrics and visualization suggest a wealth of possibilities
around exploratory analysis. Our analysis incorporated only three categories of metadata
(country of origin, partition type, and operating system), and only began to scratch the
surface on possible techniques to discern differences in common operating system software.
Similar visualization strategies may have applications for prototyping automated analytical
methods, as well as presenting results to an analyst in an intuitive manner.

Lastly, manual inspection of correlating known sector hashes found in SectorScope with
its filesystem in Autopsy is incredibly time intensive and does not scale. Automated
techniques capable of identifying files associated with matching sector-level hashes would
greatly enhance the ability to find similarities of interest between images.

59

THIS PAGE INTENTIONALLY LEFT BLANK

60

APPENDIX: [Disk Image Filenames by Number]

1 IL007-0014
2 TH03-0003
3 BS001-0016
4 TH03-0055
5 BD1-1044
6 BA0-1132
7 IL3-0220
8 HU001-0018
9 IL28
10 AE10-1038
11 PK1-1021
12 BD1-1006
13 CN26-10
14 IL3-0129
15 CN27-31
16 IL004-0013
17 HU001-0016
18 TH03-0041
19 CN33-65
20 IL2-0082
21 AE1001-1007
22 IL3-0172
23 PK1-1032
24 BD1-1062
25 IL005-0004
26 CN6-20
27 IL19
28 CN9-07
29 IL3-0169

61

30 IL005-0006
31 CN26-20
32 CN18-37
33 HU001-0010
34 CN27-42
35 TH0001-0054
36 TH03-0004
37 CN16-27
38 TH03-0014
39 PK1-1079
40 TH0001-0064
41 IL3-0096
42 CN34-16
43 TH03-0068
44 IL2-0003
45 IL007-0008
46 CN28-04
47 PK1-1050
48 CN27-37
49 BA0-1117
50 CN32-46
51 CN8-01
52 BD1-1010
53 PK1-1081
54 AE1001-1008
55 CN11-22
56 TH0001-0009
57 HU001-0002
58 IL3-0148
59 IL3-0154
60 TH03-0019

62

61 IL3-0209
62 CN32-57
63 AE10-007
64 BD1-1019
65 IL4-0007
66 TH0001-0108
67 IL2-0073
68 IL3-0113
69 IL3-0164
70 CN19-07
71 BD1-1069
72 BA0-1131
73 CN3-04
74 HU001-0021
75 EG1001-0001
76 BS001-0004
77 BD1-1011
78 IL3-0181
79 BS001-0024
80 IL3-0206
81 TH0001-0011
82 PK2-2003
83 IL006-0005
84 PK1-1015
85 AE1001-1001
86 IL2-0090
87 HU001-0019
88 CN16-33
89 TH0001-0043
90 HU001-0009
91 IL2-0084

63

92 IL54
93 IL2-0049
94 CN30-25
95 IL21
96 IL13
97 CN32-72
98 BD1-1007
99 CN33-97
100 AE10-1020

Table A.1: Disk image name represented by number

64

List of References

[1] T. Wilson. (2012, July). Study: Cybersecurity market to double in next five years.
[Online]. Available: http://www.darkreading.com/study-cybersecurity-market-to-
double-in-next-five-years/d/d-id/1137973. Accessed February 8, 2016.

[2] National Institute of Standards and Technology. (2012, July). Digital evidence. [On-
line]. Available: http://www.nist.gov/oles/forensics/digital_evidence.cfm. Accessed
July 21, 2015.

[3] Computer Forensics. (2013, February). [Online]. Available: https://www.us-cert.
gov/security-publications/computer-forensics. Accessed February 8, 2016.

[4] National Institute of Justice. (2010, November). Digital evidence and forensics.
[Online]. Available: http://www.nij.gov/topics/forensics/evidence/digital/Pages/
welcome.aspx. Accessed July 23, 2015.

[5] M. Brown, D. Stikvoort, K.-P. Kossakowski, G. Killcrece, R. Ruefle, and M. Zajicek.
(2003, April). Handbook for computer security incident response teams (csirts).
[Online]. Available: http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=
6305. Accessed January 4, 2016.

[6] V. Turner, J. F. Gantz, D. Reinsel, and S. Minton. (2014, April). The digital universe
of opportunities: Rich data and the increasing value of the internet of things. [On-
line]. Available: http://www.emc.com/leadership/digital-universe/2014iview/index.
htm. Accessed July 14, 2015.

[7] E. Grochowski and R. D. Halem, “Technological impact of magnetic hard disk
drives on storage systems,” IBM Systems Journal, vol. 42, no. 2, p. 338, 2003. [On-
line]. Available: http://search.proquest.com/docview/222428908?accountid=12702

[8] S. Haldar and A. Aravind, Operating Systems. Panchsheel Park, New Delhi: Pearson
India, May 2010.

[9] Seagate. Transition to advanced format 4k sector hard drives. [Online]. Available:
http://www.seagate.com/tech-insights/advanced-format-4k-sector-hard-drives-
master-ti/. Accessed July 14, 2015.

[10] M. Russinovich, D. A. Solomon, and A. Ionescu, Windows Internals Part 2. Red-
mond, Washington: Microsoft Press, 2012.

[11] Forensics Wiki. (2008, July). Disk image. [Online]. Available: http://forensicswiki.
org/wiki/Disk_image. Accessed February 25, 2016.

65

http://www.darkreading.com/study-cybersecurity-market-to-double-in-next-five-years/d/d-id/1137973
http://www.darkreading.com/study-cybersecurity-market-to-double-in-next-five-years/d/d-id/1137973
http://www.nist.gov/oles/forensics/digital_evidence.cfm
https://www.us-cert.gov/security-publications/computer-forensics
https://www.us-cert.gov/security-publications/computer-forensics
http://www.nij.gov/topics/forensics/evidence/digital/Pages/welcome.aspx
http://www.nij.gov/topics/forensics/evidence/digital/Pages/welcome.aspx
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=6305
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=6305
http://www.emc.com/leadership/digital-universe/2014iview/index.htm
http://www.emc.com/leadership/digital-universe/2014iview/index.htm
http://search.proquest.com/docview/222428908?accountid=12702
http://www.seagate.com/tech-insights/advanced-format-4k-sector-hard-drives-master-ti/
http://www.seagate.com/tech-insights/advanced-format-4k-sector-hard-drives-master-ti/
http://forensicswiki.org/wiki/Disk_image
http://forensicswiki.org/wiki/Disk_image

[12] ASR Data’s Expert Witness Compression Format. (2002). [Online]. Available:
http://forensicswiki.org/wiki/ASR_Data’s_Expert_Witness_Compression_Format.
Accessed March 8, 2016.

[13] A. Z. Broder, “On the resemblance and containment of documents,” in Proc. IEEE
In Compression and Complexity of Sequences (SEQUENCES ’97), 1997, pp. 21–29.

[14] L. Wetzel. (2014). Types and tokens. [Online]. Available: http://plato.stanford.edu/
archives/spr2014/entries/types-tokens/. Accessed February 25, 2016.

[15] A. Rajaraman, J. Leskovec, and J. D. Ullman, Mining of Massive Datasets. Cam-
bridge, United Kingdom: Cambridge University Press, 2014.

[16] T. M. Fruchterman and E. M. Reingold, “Graph drawing by force-directed place-
ment,” Software: Practice and Experience, vol. 21, pp. 1129–1164, 2006.

[17] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding of
communities in large networks,” Journal of Statistical Mechanics: Theory and Ex-
periment, 2008.

[18] A. Z. Broder, “Some applications of rabin’s fingerprinting method,” in Sequences II:
Methods in Communications, Security, and Computer Science, 1993, pp. 143–152.

[19] R. Rivest. (1992, April). The md5 message-digest algorithm. [Online]. Available:
http://tools.ietf.org/html/rfc1321. Accessed July 14, 2015.

[20] P. Rogaway and T. Shrimpton, “Cryptographic hash-function basics: Definitions,
implications, and separations for preimage resistance, second-preimage resistance,
and collision resistance,” in Fast Software Encyrption. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 371–388.

[21] X. Wang and H. Yu, How to Break MD5 and Other Hash Functions. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2005, pp. 19–35.

[22] National Institute of Standards and Technology Special Publication 800-168. Ap-
proximate Matching: Definition and Terminology. (2014, May). Computer Security
Resource Center (CSRC). [Online]. Available: http://csrc.nist.gov/. Accessed July
21, 2015.

[23] S. Garfinkel, A. Nelson, D. White, and V. Roussev, “Using purpose-built functions
and block hashes to enable small block and sub-file forensics,” Digital Investigation,
vol. 7, pp. S13–S23, 2010.

[24] S. Garfinkel and M. McCarrin, “Hash-based carving: Searching media for complete
files and file fragments with sector hashing and hashdb,” DFRWS, 2015.

66

http://forensicswiki.org/wiki/ASR_Data's_Expert_Witness_Compression_Format
http://plato.stanford.edu/archives/spr2014/entries/types-tokens/
http://plato.stanford.edu/archives/spr2014/entries/types-tokens/
http://tools.ietf.org/html/rfc1321

[25] P. Jaccard, “The distribution of the flora in the alpine zone,” New Phytologist,
vol. 11, no. 2, pp. 37–50, 1912. [Online]. Available: http://dx.doi.org/10.1111/j.
1469-8137.1912.tb05611.x

[26] R. Merkle. (1979, June). Secrecy, authentication, and public key systems. [Online].
Available: http://www.merkle.com/papers/Thesis1979.pdf. Accessed February 24,
2016.

[27] M. Rabin, “Fingerprinting by random polynomials,” Center for Research in Comput-
ing Technology, Harvard University. TR-CSE-03-01, 1981.

[28] R. Vassil, “Data fingerprinting with similarity digests,” in Advances in Digital
Forensics VI, ser. IFIP Advances in Information and Communication Technol-
ogy. Springer Berlin Heidelberg, 2010, vol. 337, pp. 207–226. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-15506-2_15

[29] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig, “Syntactic clustering
of the web,” SRC Technical Note, 1997.

[30] Federal Evidence Review. (2002). [Online]. Available: http://federalevidence.com/
blog/2008/september/using-‘‘hash’’-values-handling-electronic-evidencet. Ac-
cessed March 8, 2016.

[31] National Institute of Standards and Technology. National software reference library.
[Online]. Available: http://www.nsrl.nist.gov/

[32] N. Harbour. (2002). Defense computer forensics lab. [Online]. Available: http:
//dcfldd.sourceforge.net/. Accessed July 14, 2015.

[33] L. Chen and G. Wang, “An efficient piecewise hashing method for computer foren-
sics,” International Workshop on Knowledge Discovery and Data Mining, pp. 635–
638, 2008.

[34] J. Kornblum, “Identifying almost identical files using context triggered piecewise
hashing,” Digital Investigation, vol. 3, pp. 91–97, 2006.

[35] Jesse Kornblum. (2015). ssdeep. [Online]. Available: http://ssdeep.sourceforge.net/.
Accessed March 8, 2016.

[36] V. Roussev. (2013). [Online]. Available: http://roussev.net/sdhash/sdhash.html. Ac-
cessed March 8, 2016.

[37] S. Garfinkel, “Digital media triage with bulk data analysis and bulk_extractor,” Com-
puters & Security, vol. 32, pp. 56–72, February 2013.

67

http://dx.doi.org/10.1111/j.1469-8137.1912.tb05611.x
http://dx.doi.org/10.1111/j.1469-8137.1912.tb05611.x
http://www.merkle.com/papers/Thesis1979.pdf
http://dx.doi.org/10.1007/978-3-642-15506-2_15
http://federalevidence.com/blog/2008/september/using-``hash''-values-handling-electronic-evidencet
http://federalevidence.com/blog/2008/september/using-``hash''-values-handling-electronic-evidencet
http://www.nsrl.nist.gov/
http://dcfldd.sourceforge.net/
http://dcfldd.sourceforge.net/
http://ssdeep.sourceforge.net/
http://roussev.net/sdhash/sdhash.html

[38] S. Collange, Y. S. Dandass, M. Daumas, and D. Defour, “Using graphics processors
for parallelizing hash-based data carving,” in System Sciences, 2009. HICSS ’09.
42nd Hawaii International Conference on, Jan 2009, pp. 1–10.

[39] S. Garfinkel, “DFRWS 2006 challenge report,” 2006. [Online]. Available:
http://sandbox.dfrws.org/2006/garfinkel/part1.txt. Accessed August 12, 2015.

[40] J. Young, K. Foster, S. Garfinkel, and K. Fairbanks, “Distinct sector hashes for target
file detection,” IEEE Computer, vol. 45, pp. 28–35, 2012.

[41] S. Garfinkel, P. Farrella, V. Roussev, and G. Dinolta, “Bringing science to digital
forensics with standardized forensic corpora,” Digital Investigation, vol. 6, pp. S2–
S11, September 2009.

[42] Forensics Wiki. (2010, June). Bulk extractor. [Online]. Available: http://www.
forensicswiki.org/wiki/Bulk_extractor. Accessed August 5, 2015.

[43] B. Allen. (2015). Nps hash database library. [Online]. Available: https://github.com/
simsong/hashdb. Accessed August 5, 2015.

[44] Gephi. (2015). Download. [Online]. Available: https://gephi.org/users/download/.
Accessed January 11, 2016.

[45] B. Allen. (2015). Sectorscope. [Online]. Available: https://github.com/NPS-DEEP/
NPS-SectorScope. Accessed August 5, 2015.

68

http://www.forensicswiki.org/wiki/Bulk_extractor
http://www.forensicswiki.org/wiki/Bulk_extractor
https://github.com/simsong/hashdb
https://github.com/simsong/hashdb
https://gephi.org/users/download/
https://github.com/NPS-DEEP/NPS-SectorScope
https://github.com/NPS-DEEP/NPS-SectorScope

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

69

	Introduction
	Motivation
	Contributions
	Outline of this Thesis

	Technical Background
	Secondary Storage Basics
	Document Similarity
	Bytewise Approximate Matching

	Previous Work
	Foundations of Forensic Matching Techniques
	Forensic Applications of Cryptographic Hashing
	Context-Sensitive Matching
	Block Hash Matching

	Methodology
	Dataset
	Hardware
	Software
	Overview of Methodology

	Results
	Experiment 1: Summary Statistics of Similarity Scores and Visualization
	Experiment 2: Common Set of Hashes Across Dataset
	Experiment 3: Frequency and Distribution of Common Hashes
	Experiment 4: Matching Sector-Level Hashes Across Dataset
	Experiment 5: Common Set of Hashes by Community

	Conclusion
	Summary
	Future Work

	Appendix: [Disk Image Filenames by Number]
	List of References
	Initial Distribution List

